Abstract:
In certain aspects, a method for temperature monitoring comprises receiving temperature readings from a plurality of temperature sensors on a chip, and determining an average or a sum of the temperature readings from the temperature sensors. The sum may be a weighted sum of the temperature readings. The method also comprises computing a temperature at a location on the chip based on the average or sum of the temperature readings. The location may be located at approximately a centroid of the locations of the temperature sensors, an estimated hotspot location on the chip, or another location on the chip.
Abstract:
Systems and methods relate to thermal management of electronic headsets, such as virtual reality headsets. An electronic headset includes a body which can hold a processing system. A heat spreader is attached to the body, wherein the heat spreader includes a chimney. The chimney is designed to dissipate heat generated by the processing system. The heat spreader can be controlled to extend the chimney based on the heat perceived on external surfaces of the electronic headset which can come in contact with a user's skin. The chimney includes an air gap and provides a passive cooling system.
Abstract:
Methods and apparatus for implementing a synthetic jet to cool a device are provided. Examples of the techniques keep a device case cool enough to be hand-held, while allowing a higher temperature of a circuit component located in the case, to maximize circuit performance. In an example, provided is a mobile device including a synthetic jet configured to transfer heat within the mobile device. The synthetic jet can be embedded in a circuit board inside the mobile device such that the circuit board defines at least a portion of a chamber of the synthetic jet and defines an orifice of the synthetic jet. The device case can define at least one fluid channel inside the mobile device. Also, the circuit board can define a synthetic jet outlet configured to direct a fluid at the at least one fluid channel. Also provided are methods for controlling a synthetic jet.
Abstract:
Aspects include computing devices, systems, and methods for selecting preferred processor core combinations for a state of a computing device. In an aspect, a state of a computing device containing the multi-core processor may be determined. A number of current leakage ratios may be determined by comparing current leakages of the processor cores to current leakages of the other processor cores. The ratios may be compared to boundaries for the state of the computing device in respective inequalities. A processor core associated with a number of boundaries may be selected in response to determining that the respective inequalities are true. The boundaries may be associated with a set of processor cores deemed preferred for an associated state of the computing device. The processor core present in the set of processor cores for each boundary of a true inequality may be the selected processor core.
Abstract:
Various embodiments of methods and systems context-aware thermal management in a portable computing device ("PCD") are disclosed. Notably, the environmental context to which a PCD is subjected may have significant impact on the PCD's thermal energy dissipation efficiency. Embodiments of the solution seek to leverage knowledge of a PCD's environmental context to modify or adjust thermal policy parameters applied within a PCD in response to a thermal event within the PCD.
Abstract:
A method for temperature mitigation includes receiving a signal from a temperature sensor that is disposed within a computing device. A processor chip within the computing device produces heat. The signal from the temperature sensor is converted to temperature data. The method further includes processing the temperature data to generate an estimate of a temperature of an external surface of the device. The processing includes applying a low pass filter to the temperature data, applying an amplitude attenuation to the temperature data, and applying a delay to the temperature data. The method further includes reducing an operating parameter of the processor chip, such as operating frequency, in response to the estimated temperature of the external surface of the device.
Abstract:
In one embodiment, a temperature management system comprises a plurality of thermal sensors at different locations on a chip, and a temperature manager. The temperature manager is configured to receive a plurality of temperature readings from the thermal sensors, to fit a quadratic temperature model to the received temperature readings, and to estimate a hotspot temperature on the chip using the fitted quadratic temperature model.
Abstract:
A package-on-package (PoP) device includes a first package, a second package, and a bi-directional thermal electric cooler (TEC). The first package includes a first substrate and a first die coupled to the first substrate. The second package is coupled to the first package. The second package includes a second substrate and a second die coupled to the second substrate. The TEC is located between the first die and the second substrate. The TEC is adapted to dynamically dissipate heat back and forth between the first package and the second package. The TEC is adapted to dissipate heat from the first die to the second die in a first time period. The TEC is further adapted to dissipate heat from the second die to the first die in a second time period. The TEC is adapted to dissipate heat from the first die to the second die through the second substrate.
Abstract:
Metal thermal grounds are used for dissipating heat from integrated-circuit resistors. The resistors may be formed using a front end of line layer, for example, a titanium-nitride layer. A metal region (e.g., in a first metal layer) is located over the resistors to form a heat sink. An area of thermal posts connected to the metal region is also located over the resistor. The metal region can be connected to the substrate of the integrated circuit to provide a low impedance thermal path out of the integrated circuit.
Abstract:
A device that includes a first integrated device, a second integrated device configured to be electrically coupled to the first integrated device and an electrowetting device configured to be electrically coupled to the second integrated device. The electrowetting device is configured to redistribute heat across a back surface of the device by looping a liquid in the electrowetting device, along the back surface of the device.