Abstract:
A data transmitter includes: a plurality of parallel driver slices, a first slice of the plurality of parallel driver slices having a first signal generator circuit with a first transistor coupled to a data signal and in series with a second transistor coupled to a first bias signal; and a first bias circuit including a third transistor and a fourth transistor in series with a first current source, the first bias circuit further including a first operational amplifier (op amp) having a first input coupled to a first reference voltage and a second input coupled between the fourth transistor and the first current source, an output of the first op amp configured to provide the first bias signal to the second transistor and to the third transistor.
Abstract:
Techniques for reducing noise and power consumption in a loop filter for a phase-locked loop (PLL) are described herein. In one embodiment, a loop filter for a PLL comprises a first proportional capacitor, a second proportional capacitor, an active device, and a plurality of switches. The plurality of switches are configured to alternately couple the first proportional capacitor and the second proportional capacitor to a first charge pump, to alternately couple noise from the active device to the first proportional capacitor and the second proportional capacitor, and to alternately couple the first proportional capacitor and the second proportional capacitor into a feedback circuit, wherein the feedback circuit produces an output voltage of the loop filter.
Abstract:
A single-ended comparator is disclosed herein. The comparator may be implemented with low-voltage semiconductor devices that are capable of operating with high-voltage signals at an input. The single-ended comparator may be integrated in a larger circuit to receive and detect information provided on the input at voltage levels higher than the levels supported by the rest of the circuit, and transfer the information in the received signal for use by the rest of the circuit.
Abstract:
A push-pull driver is provided with a differential amplifier that amplifies a difference between an input voltage and an output voltage to drive a bias node coupled to a diode-connected bias transistor. The push-pull driver is configured to control the drain-to-source voltage for a source-follower output transistor having its gate tied to a gate for the diode-connected bias transistor to be proportional to the drain-to-source voltage for the diode-connected bias transistor. This proportionality prevents excessive static current variation that would otherwise be present in the source-follower output transistor.
Abstract:
Systems and methods for adjusting a phase step size of a clock data recover (CDR) circuit are described according to aspects of the present disclosure. In certain aspects, a method for adjusting a phase step size of a CDR circuit includes sensing a frequency offset of the CDR circuit, and adjusting the phase step size of the CDR circuit based on the sensed frequency offset. The frequency offset may be sensed by sensing a signal level on an integration path of a loop filter of the CDR circuit. The phase step size of the CDR circuit may be adjusted by switching the CDR circuit between a first phase step size and a second phase step size using a modulator (e.g., a sigma-delta modulator).
Abstract:
Systems and methods for recovering clock and data from a data input signal are disclosed that sample a plurality of clock phase signals with the data input signal to determine a timing relationship between the data input signal and the clock phase signals and use the determined to timing relationship to select one of the clock phase signals to use for sampling the data input signal to produce recovered data. The CDR can include a glitch suppression module to suppress glitches on the clock output signal that could be caused by large instantaneous jitter on the data input signal. A clock and data recovery circuit (CDR) using these methods can quickly lock to a new data input signal and can reliably receive data when there is large instantaneous timing jitter on the data input signal.