Abstract:
Non-human animal cells and non-human animals comprising a humanized Asgr1 locus and methods of using such non-human animal cells and non-human animals are provided. Non-human animal cells or non-human animals comprising a humanized Asgr1 locus express a human ASGR1 protein or an Asgr1 protein, fragments of which are from human ASGR1. Methods are provided for using such non-human animals comprising a humanized Asgr1 locus to assess in vivo efficacy of human-ASGR1-mediated delivery of therapeutic molecules or therapeutic complexes to the liver and to assess the efficacy of therapeutic molecules or therapeutic complexes acting via human-ASGR1-mediated mechanisms.
Abstract:
The present disclosure provides multispecific antigen-binding molecules and uses thereof. The multispecific antigen-binding molecules comprise a first antigen-binding domain that specifically binds a target molecule, and a second antigen-binding domain that specifically binds an internalizing effector protein. The multispecific antigen-binding molecules of the present disclosure can, in some embodiments, be bispecific antibodies that are capable of binding both a target molecule and an internalizing effector protein. In certain embodiments of the disclosure, the simultaneous binding of the target molecule and the internalizing effector protein by the multispecific antigen-binding molecule of the present disclosure results in the attenuation of the activity of the target molecule to a greater extent than the binding of the target molecule alone. In other embodiments of the disclosure, the target molecule is a tumor associated antigen, and the simultaneous binding of the tumor associated antigen and the internalizing effector protein by the multispecific antigen-binding molecule of the present disclosure causes or facilitates the targeted killing of tumor cells.
Abstract:
The present relates to VEGF traps and VEGF mini-traps that include VEGF receptor Ig-like domains, fused to a multimerizing component, which bind to VEGF and block its interaction with the VEGF receptor. Such molecules are useful for treating angiogenic eye disorders (e.g., age-related macular degeneration), cancer and for other undesired angiogenesis.
Abstract:
The present disclosure provides multispecific antigen-binding molecules and uses thereof. The multispecific antigen-binding molecules comprise a first antigen-binding domain that specifically binds a target molecule, and a second antigen-binding domain that specifically binds an internalizing effector protein. The multispecific antigen-binding molecules of the present disclosure can, in some embodiments, be bispecific antibodies that are capable of binding both a target molecule and an internalizing effector protein. In certain embodiments of the disclosure, the simultaneous binding of the target molecule and the internalizing effector protein by the multispecific antigen-binding molecule of the present disclosure results in the attenuation of the activity of the target molecule to a greater extent than the binding of the target molecule alone. In other embodiments of the disclosure, the target molecule is a tumor associated antigen, and the simultaneous binding of the tumor associated antigen and the internalizing effector protein by the multispecific antigen-binding molecule of the present disclosure causes or facilitates the targeted killing of tumor cells.
Abstract:
The present invention provides VEGF mini-trap molecules and method of treating or preventing angiogenic disorders such as angiogenic eye disorders and cancer.
Abstract:
Non-human animal cells and non-human animals comprising a humanized Asgr1 locus and methods of using such non-human animal cells and non-human animals are provided. Non-human animal cells or non-human animals comprising a humanized Asgr1 locus express a human ASGR1 protein or an Asgr1 protein, fragments of which are from human ASGR1. Methods are provided for using such non-human animals comprising a humanized Asgr1 locus to assess in vivo efficacy of human-ASGR1-mediated delivery of therapeutic molecules or therapeutic complexes to the liver and to assess the efficacy of therapeutic molecules or therapeutic complexes acting via human-ASGR1-mediated mechanisms.
Abstract:
The present invention provides, inter alia, a method for cell-specific modulation of a target antigen. The method comprises contacting a target cell having the target antigen on the surface of the target cell with: (a) first multi-specific antigen-binding polypeptide comprising: (i) a cell-specific antigen binding domain (C1), (ii) a target antigen binding domain (T1); and (b) a second multi-specific antigen-binding polypeptide comprising: (i) a cell-specific antigen binding domain (C2), (ii) a target antigen binding domain (T2); wherein C1 and C2 interact with the same cell-specific antigen, and the cell-specific antigen and the target antigen are on the same target cell. Pharmaceutical compositions and kits thereof are also included in the present invention.