Abstract:
The present invention relates to a novel and inventive compound device structure, enabling a charge-based approach that takes advantage of sub-threshold operation, for designing analog CMOS circuits. In particular, the present invention relates to a solid state device based on a complementary pair of n-type and p-type current field-effect transistors, each of which has two control ports, namely a low impedance port and gate control port, while a conventional solid state device has one control port, namely gate control port. This novel solid state device provides various improvement over the conventional devices.
Abstract:
A novel phase locked loop design utilizing novel phase-frequency detector, charge pump, loop filter and voltage controlled oscillator is disclosed. The phase-frequency detector includes a dual reset D-flip flop for use in multi-GHz phase locked loops. Traditional dead zone issues associated with phase frequency detector are improved / addressed by use with a charge transfer-based PLL charge pump.
Abstract:
The present invention relates to passive phased injection locked circuit and ring-based voltage controlled oscillators. A passive phased injection locked circuit comprises first and second transmission lines, each has a plurality of discrete elements, that are operative to deley the phase of AC signal. Between the first and second transmission lines, a capacitor network is formed to advance the phases of the AC signal in concert along the transmission lines. For the ring-based voltage controlled oscillators, each of the first and second transmission lines has an odd number of discrete elements.
Abstract:
Analog circuit made with digital parts can be made at deep sub-micron feature size. The use of capacitor ladders, configured to be switched from series to parallel to series electronically, permit precision outputs to be achieved without precision parts.
Abstract:
A method and apparatus for an ultra-high sensitivity, low cost, passive (no battery) low-power energy harvesting data transmitting circuit energy, such as a RFID (Radio Frequency IDentification) tag integrated circuit "chip." By using combinations of special purpose design enhancements, the low-power energy harvesting passive data transmitting circuit, such as the RFID tag chip, operates in the sub-microwatt power range. The chip power should be derived from a low-microwatt per square centimeter RF field radiated to the RFID tag antenna from the tag reader (interrogator) or derived from a suitable low signal source, such as a sonic transducer (e.g., a piezoelectric transducer or a low level DC source, such as a bi-metallic or chemical source).
Abstract:
Charge-based charge pumps are described which include a switchable capacitor configured for connection to a voltage source, a ground, and a charge pump output. A first pair of switches include a first switch configured to connect the switchable capacitor to ground and a second switch configured to connect the switchable capacitor to the voltage source. A second pair of switches include a third switch configured to connect a first node, between the switchable capacitor and ground, to the charge pump output, and a fourth switch configured to connect a second node, between the switchable capacitor and the voltage source, to the charge pump output. Locked loop designs, such as phase locked loops or delay locked loops, are described that include charge-based charge pumps.