Abstract:
An area efficient amplifier that amplifies a continuous-time continuous-amplitude signal and converts it to a discrete-time discrete-amplitude signal. The amplifier includes a first oscillator having an input and a plurality of N outputs and a second oscillator having an input and N outputs. The amplifier includes N phase detectors, each phase detector has a first input, a second input, a first output, and a second output, where each first input of each phase detector is coupled to respective one of the N outputs of the first oscillator, where each second input of each phase detector is coupled to respective one of the N outputs of the second oscillator. The amplifier includes N quantizers, each quantizer has a data input, a clock input, and an output, where each data input of each quantizer is coupled to respective one first output or one second output of the N phase detectors.
Abstract:
A system includes a signal generator and a signal combiner. The signal generator is configured to output a first signal having a first frequency and to output one or more signals having the first frequency and having phases shifted relative to the first signal by predetermined amounts. The signal combiner is configured to combine the first signal and the one or more signals to output a frequency multiplied second signal having a second frequency. The second frequency is greater than the first frequency.
Abstract:
Methods and an apparatus related to generating parameters and guidelines used in the manufacture of semiconductor IC devices are described. A method includes measuring a first oscillating signal (410) produced by a first ring oscillator (404) that includes a first interconnect provided in a first interconnect layer of an IC, selecting a first mode of operation for a second ring oscillator circuit (406, 408) that includes a second interconnect disposed in alignment with the first interconnect, selecting a second mode of operation for the second ring oscillator circuit (406, 408), and determining one or more characteristics of the first interconnect based on a difference in frequency of the first oscillating signal (410) produced when the second ring oscillator circuit is operated in the first mode and frequency of the first oscillating signal (410) when the second ring oscillator circuit is operated in the second mode.
Abstract:
In described examples, an FLL (frequency locked loop) oscillator/clock generator (100) includes a free-running oscillator (110), which generates an FLL clk with an FLL-controlled frequency fosc- The FLL control loop includes a switched capacitor resistor divider (130) that converts fosc to a resistance, generating an FLL feedback voltage (Vfosc) to generate a loop control signal (OSC cntrl) input to the oscillator (110). In response, the oscillator frequency locks FLL clk to fosc. In an example implementation, the FLL oscillator/clock generator (100) operates with spread spectrum clocking (SSC) that provides triangular SSC modulation based on a truncated RC transition voltage generated as a negative feedback to an RC relaxation oscillator, with truncation based on switched tripping threshold voltages generated a positive feedback to the RC relaxation oscillator.
Abstract:
Some embodiments include apparatuses and methods having a digitally controlled oscillator (DCO) in a digital phase-locked loop (PLL) and a control loop. The DCO can generate an output signal having a frequency based on a value of a digital information. The control loop can adjust a value of a supply voltage of the DCO based on the value the digital information. Additional apparatuses and methods are described.
Abstract:
An electronic circuit comprises: an input terminal; an output terminal; first and second supply rails; first, second, third, and fourth field effect transistors, FETs, each of a first type and each having respective gate, source and drain terminals; and first and second loads. The source of the first FET is connected to the first supply rail, the drain of the first FET and the source of the second FET are connected to the output terminal, the drain of the second FET is connected to the second supply rail, the gate of the third FET and the gate of the fourth FET are connected to the input terminal, the drain of the third FET is connected to the second supply rail, the first load is connected between the first supply rail and the source of the third FET, and the second load is connected between the drain of the fourth FET and the second supply rail. In one aspect of the invention, the gate of the first FET is connected to a node between the source of the third FET and the first load such that a voltage at the source of the third FET is applied to the gate of the first FET, and the gate of the second FET is connected to a node between the drain of the fourth FET and the second load such that a voltage at the drain of the fourth FET is applied to the gate of the second FET.
Abstract:
A divide-by-two divider circuit receives a differential input signal and outputs four rail-to-rail, twenty-five percent duty cycle signals, where the frequency of the output signals is half of the frequency of the input signal. Each latch can output its output signals into loads of at least 15fF at a frequency of at least 3GHz so that each output signal has a phase noise of better than 160dBc/Hz, while the latch consumes less than 0.7mW over PVT from a supply voltage less than 1.0 volt. Each latch has a cross-coupled pair of P-channel transistors and two output signal generating branches. A static current blocking circuit in each branch prevents current flow in the branch during times when the branch is not switching its output signal. The input node of the latch is capacitively coupled to a signal source, and the DC voltage on the node is set by a bias circuit.
Abstract:
A method, an apparatus, and a computer program product are provided. The apparatus generates LO signals. The apparatus includes a LO generator module and an injection signal generator module coupled together. The LO generator module has a plurality of LO outputs and a plurality of injection signal inputs. The LO module is configured to generate the LO signals on the LO outputs based on injection signals received on the injection signal inputs. The injection signal generator module has a plurality of LO inputs and a plurality of injection signal outputs. The LO inputs are coupled to the LO outputs. The injection signal outputs are coupled to the injection signal inputs. The injection signal generator module is configured to generate injection signals on the injection signal outputs based on the LO signals received on the LO inputs and based on a received VCO signal.