Abstract:
Methods are provided for remediating contaminated soil. The methods may include collecting contaminated soil at a plurality of treatment sites. The contaminated soil at one or more of the plurality of treatment sites may be at least partially contained. Vapors produced from heating soil at one site may be used to heat contaminated soil at another site. A fluid directed to a portion of heated contaminated soil may accelerate heat transfer through the site of contaminated soil or through another site of contaminated soil. A method may include heating contaminated soil from more than one site at substantially the same time. Heating contaminated soil from more than one site at substantially the same time may include in situ and ex situ treatment at a common location.
Abstract:
A soil remediation system, such as an in situ thermal desorption system, may be used to treat contaminated soil in a treatment area with an arcuate obstruction in the treatment area. A pattern of wells may be positioned to avoid placing a well in a wall of the obstruction. The well pattern may be oriented based upon the center of the obstruction. A well of the well pattern may be placed at the center of the obstruction. Alternatively, the center of the obstruction may be positioned at a centroid of a unit of the well pattern, or at the midpoint of a side of a unit of the well pattern. The well pattern may be a regular pattern that is positioned so that the arcuate obstruction is placed within a large gap between adjacent orbitals (or rings) of the regular well pattern.
Abstract:
A process may include providing heat from one or more heaters to at least a portion of a subsurface formation. Heat may transfer from one or more heaters to a part of a formation. In some embodiments, heat from the one or more heat sources may pyrolyze at least some hydrocarbons in a part of a subsurface formation. Hydrocarbons and/or other products may be produced from a subsurface formation. Certain embodiments describe apparatus, methods, and/or processes used in treating a subsurface or hydrocarbon containing formation.
Abstract:
A method is described for inhibiting migration of fluids into and/or out of a treatment area undergoing an in situ conversion process. Barriers in the formation proximate a treatment area may be used to inhibit migration of fluids. Inhibition of migration of fluids may occur before, during, and/or after an in situ treatment process. For example, migration of fluids may be inhibited while heat is provided from heaters to at least a portion of the treatment area. Barriers may include naturally occurring portions (e.g., overburden, and/or underburden) and/or installed portions, such as frozen barrier zones, cooled by a refrigerant.
Abstract:
An in situ soil remediation system may be used to remove or reduce levels of mercury contamination within soil. The soil remediation system may also remove or reduce levels of other contaminants within the soil. Mercury may be vaporized within the soil by a heating system. The vaporized mercury may be removed from the soil by a vacuum system. The vaporized mercury may pass through heated risers that elevate the vaporized mercury. After the vaporized mercury passes from the heated risers, the vaporized mercury may be allowed to cool, condense, and flow downward to a treatment facility. Removing mercury from the soil as a vapor may provide an economical, safe, and efficient way to remediate mercury contaminated soil.
Abstract:
An in situ process for treating a hydrocarbon containing formation is provided. The process may include providing heat from one or more heaters to at least a portion of the formation. The heat may be allowed to transfer from the one or more heaters to a part of the formation such that heat from the one or more heat sources pyrolyzes at least some hydrocarbons within the part. Hydrocarbons may be produced from the formation.
Abstract:
Freeze wells may be used to isolate an area for soil remediation. Freeze wells may form a frozen barrier around a treatment area. The frozen barrier may inhibit fluid from entering into the treatment area. The frozen barrier may also inhibit migration of contamination out of the treatment area. The frozen barrier may be used to surround all of the perimeter of the treatment area. A frozen barrier may also be formed above or below a treatment area. Freeze wells may be activated in advance of soil remediation so that a frozen barrier is formed when soil remediation is begun. The soil remediation may be accomplished by any type of soil remediation system, including a thermal soil remediation system. Heaters of a thermal soil remediation system may be may be placed close to the frozen barrier without the barrier being broken through during remediation.
Abstract:
A method for treating a tar sands formation is disclosed. The method includes heating a first portion of a hydrocarbon layer in the formation from one or more heaters located in the first portion. The heat is controlled to increase a fluid injectivity of the first portion. A drive fluid and/or an oxidizing fluid is injected and/or created in the first portion to cause at least some hydrocarbons to move from a second portion of the hydrocarbon layer to a third portion of the hydrocarbon layer. The second portion is between the first portion and the third portion. The first, second, and third portions are horizontally displaced from each other. The third portion is heated from one or more heaters located in the third portion. Hydrocarbons are produced from the third portion of the formation. The hydrocarbons include at least some hydrocarbons from the second portion of the formation.
Abstract:
Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.
Abstract:
Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.