Abstract:
Disclosed is a mobile robot adapted to traverse vertical obstacles. The robot comprises a frame and at least one wheel positioned in a front section of the robot, at least two middle wheels and at least two rear wheels. The at least one middle wheel and at least one rear wheel are connected by a tilting lever that is arranged on each of the opposing sides of or to the frame, forming a pair of wheels. Each tilting lever can be turned around a lever bearing located between the respective axial centers of rotation of each pair of wheels.
Abstract:
The invention discloses a signaling device (10) for increasing visibility of a mobile robot. The signaling device (10) comprises a signaling section (130), a body section (120), and a base section (110). The invention also discloses a system for increasing visibility of a mobile robot. The system comprises a mobile robot, a signaling device (10) attached to the mobile robot and a remote terminal configured to at least one of monitoring and controlling at least one of the mobile robot and the signaling device (10).
Abstract:
Disclosed is a mobile robot adapted to traverse vertical obstacles. The robot comprises a frame and at least one wheel positioned in a front section of the robot, at least one middle wheel positioned in a middle section of the robot, at least one back wheel positioned in a back section of the robot, and at least one further wheel in the front, middle or back of the robot. The robot also comprises at least one motor-driven device for exerting a downward and/or upward force on the middle wheel and at least two motors for driving the wheels and the motor-driven device. Also disclosed is a method of climbing using a mobile robot as disclosed.
Abstract:
A storage system (100) is adapted to store a plurality of items and to load a delivery robot (2) with an item. The storage system (100) includes a delivery robot level (110), at least one storage level (112, 114, 116, 118) for storing the items, and a loading robot (130) adapted to grip the items and to load the items from a storage level (112, 114, 116, 118) to a delivery robot (2) located on the delivery robot level (110). The storage system (100) is adapted to move the items within a storage level (112, 114, 116, 118). The storage system may be provided with wheels and thus be mobile. It may be loaded onto a vehicle for transport from a loading area where the storage system is loaded with items for delivery, to a delivery area where the items are to be delivered by one or more delivery robots.
Abstract:
The invention discloses a mobile robot configured for delivering consumable items to delivery recipients. The mobile robot comprises an item compartment with a top section, a separator, and a bottom section. The mobile robot also comprises a temperature control component. The invention also discloses a method for delivering consumable items to delivery recipients using the mobile robot.
Abstract:
The present invention relates to a delivery method comprising providing a system comprising at least one server, at least one robot and at least one delivery terminal, the method further comprising steps of: communicating a request for at least one delivery from the at least one delivery terminal to the at least one server and/or to the at least one robot; providing instructions from the at least one server to the at least one robot about the at least one delivery, the instructions comprising information about the final delivery location; loading the at least one robot with the at least one delivery to be transported; transporting the at least one delivery in the at least one robot to the final delivery location; and providing access to the at least one delivery in the at least one robot, preferably upon arrival at the delivery location. The present invention further relates to a system comprising at least one server adapted for at least: coordinating communication within the system, receiving/storing/sending data and/or performing computations; at least one robot operating autonomously or semi-autonomously and adapted to communicate with the at least one server in order to facilitate transport of a delivery by the robot to at least one recipient; and at least one delivery terminal communicating with the at least one robot and/or the at least one server.