Abstract:
A solid medical waste collection system for collecting solid medical waste. The system comprise a mobile cart with a bag for storing the waste. A pre-detection apparatus detects metal-containing objects prior to placing them inside the bag to reduce costs to the facility in which the cart is employed. The system may also include a bag-tensioning mechanism for securing the bag to the cart.
Abstract:
System and methods for performing surgery at a target site defined by a virtual object. A surgical navigation system includes a patient tracker (54,56) to be attached to a patient. A localizer (44) cooperates with the patient tracker and generates localizer data associated with the target site during the surgery. The surgical navigation system also includes a vision device (72) to generate image data associated with the target site and surfaces surrounding the target site. A navigation computer in communication with the localizer and the vision device is configured to determine a region to be avoided outside of the target site based on the localizer data and the image data. In some cases, a second virtual object is generated to define the region to be avoided so that a surgical instrument used during the surgery avoids the region.
Abstract:
An isolated force/torque sensor assembly (10, 110, 210) for a force controlled robot (12) includes an end effector (22, 122, 222) for operatively attaching to an arm (14) of the force controlled robot (12), the end effector (22, 122, 222) having a gripping portion (36, 136, 236) adapted to be gripped by a hand of a user, and a force/torque sensor (42, 142, 242) adapted to be disposed between the gripping portion (36, 136, 236) and the arm (14) of the robot (12), the force/torque sensor (42, 142, 242) having a high force end effector interface (44, 144, 244) adapted to be attached to the arm (14) of the robot (12), a low force end effector interface (48, 148, 248) operatively attached to the gripping portion (36, 136, 236), and a transducer (45, 145, 245) disposed between the high force end effector interface (44, 144, 244) and the low force end effector interface (48, 148, 248) for reacting to loads applied to the low force end effector interface (48, 148, 248) for user controlled positioning of a surgical tool and for generating corresponding output signals, and wherein the transducer (45, 145, 245) is bypassed for high loads.
Abstract:
A camera and drape assembly for use with tracking elements of a surgical system includes a camera unit and a drape covering the camera unit. The camera unit includes a casing presenting a face for facing the tracking elements. Optical sensors are supported by the casing and are exposed through the casing for detecting the tracking elements. The drape covers the camera unit such that light signals from the tracking elements can be received by the optical sensors.
Abstract:
System and method for controlling a surgical manipulator to apply an energy applicator to a patient. The surgical manipulator cooperates with a navigation system to position the energy applicator with respect to a boundary so that the energy applicator is constrained from moving outside the boundary. The boundary is generated based on implant parameters and/or energy applicator parameters measured after manufacture of the implant.
Abstract:
Systems and methods for establishing and tracking virtual boundaries. The virtual boundaries can delineate zones in which an instrument is not permitted during a surgical procedure. The virtual boundaries can also delineate zones in which the surgical instrument is permitted during the surgical procedure. The virtual boundaries can also identify objects or structures to be treated by the instrument or to be avoided by the instrument during the surgical procedure.
Abstract:
A surgical manipulator for manipulating a surgical instrument and an energy applicator extending from the surgical instrument. The surgical manipulator includes at least one controller configured to determine a commanded pose to which the energy applicator is advanced, wherein the commanded pose is determined based on a plurality of force and torque signals.
Abstract:
A surgical system is provided to remove a predetermined volume of material from a workpiece using a surgical instrument having an energy applicator extending therefrom. The surgical system includes a tool path generator module, a manipulator controller, and a material logger module wherein the tool path generator module modifies a tool path based on an updated solid body model such that the tool path in semi-autonomous mode traverses only areas wherein the predetermined volume of material remains.
Abstract:
A system implantable components (32, 36, 38, 40) for providing therapy to or monitoring the physiologic state of living tissue. The components exchange signals over implanted bus (34). The bus includes a trunk (84) and at least one branch (14) The at least one branch is connected to and able to move relative to the trunk. Signals are inductively exchanged between the branch and the one or more trunks.
Abstract:
Systems and methods are described herein wherein a localizer is configured to detect a position of a first object and a vision device is configured to generate a depth map of surfaces near the first object. A virtual model corresponding to the first object is accessed, and a positional relationship between the localizer and the vision device in a common coordinate system is identified. An expected depth map of the vision device is then generated based on the detected position of the first object, the virtual model, and the positional relationship. A portion of the actual depth map that fails to match the expected depth map is identified, and a second object is recognize based on the identified portion.