Abstract:
The present invention relates to associative complexes of water soluble and/or water dispersible polymers and polymeric fluorosurfactants, compositions and methods for modifying substrates to provide treated articles with surface protective properties including easier cleaning, increased stain and/or soil repellency, and increased resistance to bio-fouling and environmental contamination.
Abstract:
The present invention refers to aqueous compositions of associative polyelectrolyte complexes (PECs), optionally containing surfactants. biocidal agents and/or oxidants, which ear; provide a cleaning benefit and surface protection to treated articles including reduced soiling. tendency, reduced cleaning effort and improved soil repellancy, as well as providing bacteriostatic properties to treated surfaces that thereby gain resistance to water, environmental exposure and microbial challenge. Treatment means and compositions are provided that employ associative polyelectrolyte complexes formed by combining a water soluble cationic first polyelectrolyte with, a water soluble second polyelectrolyte bearing groups of opposite charge to the first polyelectrolyte under suitable mixing conditions and at least one oxidant selected from the group: alkaline metal salts and/or alkaline earth metal salts of hypochlorous acid, hypochlorous acid, solubilized chlorine, any source of free chlorine, acidic sodium chlorite, active chlorine generating compound and any combinations or mixtures thereof. Also provided are means to form stable associative polyelectrolyte complexes with at least one oxidant in aqueous solutions having R values from about 0.10 to 20.
Abstract:
The invention relates to compositions including a hypohalite or hypochlorous acid and a soluble salt of 2,4,6 mesitylene sulfonate. The compositions may include a surfactant, a buffer, or combinations thereof. Other adjuvants may also be present. Such compositions do not require the inclusion of high concentrations of sodium hydroxide or other soluble hydroxide salts to drastically increase pH (and thus stability), although such hydroxides may be present if desired.
Abstract:
The invention relates to polymer-micelle complex. The polymer-micelle complexes include a positively charged micelle selected from the group consisting of a monomeric quaternary ammonium compound, a monomeric biguanide compound, and mixtures thereof. The positively charged micelle is electrostatically bound to a water-soluble polymer bearing a negative charge. The polymer does not comprise block copolymer, latex particles, polymer nanoparticles, cross-linked, polymers, silicone copolymer, fluorosurfactant, or amphoteric copolymer. The compositions do not form a coacervate, and do not form a film when applied to a surface.
Abstract:
The invention relates to compositions including a hypohalite or hypochlorous acid and a soluble salt of 2,4,6 mesitylene sulfonate. The compositions may include a surfactant, a buffer, or combinations thereof. Other adjuvants may also be present. Such compositions do not require the inclusion of high concentrations of sodium hydroxide or other soluble hydroxide salts to drastically increase pH (and thus stability), although such hydroxides may be present if desired.
Abstract:
A cleaning composition with a limited number of natural ingredients contain a hydrophobic syndetic, a hydrophilic syndetic, and a biguanide or a cationic quaternary ammonium salt. The cleaning composition can be used to clean laundry, soft surfaces, and hard surfaces and cleans as well or better than commercial compositions containing synthetically derived cleaning agents.
Abstract:
An antimicrobial composition contains a soluble silver salt and an alkanolamine or aminoalcohol. The composition may additionally contain an amino acid or amino acid salt and surfactant. The composition has additional stability and activity compared to prior art silver complexes.
Abstract:
The invention relates to compositions and methods of treatment employing compositions including a cationic polyelectrolyte, without any anionic polyelectrolytes, so that no polyelectrolyte complex (PEC) is formed. In addition to not forming PECs, and being free of anionic water-soluble polymers (i.e., an anionic polyelectrolyte polymer that could form a PEC with the cationic polyelectrolyte), the composition is also free of random copolymers, block copolymers, coacervates, precipitates, and silicone copolymers. The composition may be a concentrate, to be diluted prior to use to treat a surface. present invention is directed to a composition consisting of: (a) a homopolymer of diallyl dimethyl ammonium chloride (DADMAC); (b) an oxidant selected from the group consisting of a hypohalous acid, a hypohalite, and mixtures thereof; (c) water; and (d) optionally, a fragrance, a hydrotrope, a colorant, a dye, a buffer, a chelating agent, a surfactant, an electrolyte, an anti-microbial agent, a solvent, a stain and soil repellent, a lubricant, an odor control agent, a perfume, a fragrance release agent, an acid, a base, a solubilizing material, a stabilizer, an anti-corrosion agent, a thickener, a defoamer, a cloud-point modifier, a preservative, a water immiscible solvent, an enzyme, and mixtures thereof.
Abstract:
The invention relates to a polymer-micelle complex. The polymer-micelle complexes include a negatively charged micelle that is electrostatically bound to a water-soluble polymer bearing a positive charge. The polymer does not comprise block copolymer, latex particles, polymer nanoparticles, cross-linked polymers, silicone copolymer, fluorosurfactant or amphoteric copolymer. The compositions do not form a coacervate, and do not form a film when applied to a surface.
Abstract:
The present invention relates to aqueous compositions of associative polyelectrolyte complexes (PECs), optionally containing surfactants, biocidal agents and/or oxidants, which can provide surface protection to treated articles including reduced soiling tendency, reduced cleaning effort and improved soil repellancy, as well as providing bacteriostatic properties to treated surfaces that thereby gain resistance to water, environmental exposure and microbial challenge. Treatmefit means and compositions are provided that employ associative polyelectrolyte complexes formed by combining a water soluble cationic first polyelectrolyte with a water soluble second polyelectrolyte bearing groups of opposite charge to the first polyelectrolyte under suitable mixing conditions where the one polyelectrolyte present in molar excess is added in the form of a first aqueous solution during a mixing step to a second aqueous solution comprising the oppositely charged polyelectrolyte present in molar deficiency.