Abstract:
An active clearance control system for a gas turbine engine includes an annular piston with a multiple of piston lift lugs. A method of active blade tip clearance control for a gas turbine engine includes translating axial movement of an annular piston to radial movement of a multiple of blade outer air seal segments.
Abstract:
A blade outer air seal for a gas turbine engine includes a wall, a forward hook, and an aft hook. The wall extends between the forward hook and the aft hook, which are adapted to mount the blade outer air seal to a casing of the gas turbine engine. The wall includes a cored passage extending along at least a portion of the wall. The cored passage extends radially and axially through a portion of the aft hook to communicate with one or more apertures along a trailing edge of the aft hook.
Abstract:
An active clearance control system of a gas turbine engine includes a radially adjustable blade outer air seal system movable between a radially contracted Blade Outer Air Seal (BOAS) position that defines a first air volume and a radially expanded Blade Outer Air Seal (BOAS) position that defines a second air volume, the second air volume different than the first air volume. An accumulator system accommodate a difference in air volume between the first air volume and the second air volume.
Abstract:
A blade outer air seal according to an exemplary aspect of the present disclosure includes, among other things, a body to be distributed circumferentially about a blade array. The body has a plurality of grooves, which can, for example, improve the aerodynamic efficiency of a turbine. A fin is between a first groove and a second groove of the plurality of grooves. The fin extends radially from the body and terminates at a radially inner fin face that provides one or more cooling outlets.
Abstract:
A clearance control system for a gas turbine engine is provided. The system includes an inner axial wall that extends between a forward wall and an aft wall. The system also includes an outer axial wall that extends parallel to the inner axial wall to pivotally receive a full hoop thermal control ring.
Abstract:
An example active clearance control system for a gas turbine engine includes an actuator, and a case wall portion defining an aperture configured to receive the actuator. The actuator is configured to move an air seal segment, and the actuator is insertable to an installed position within the aperture through a radially outer side of the case wall portion.
Abstract:
An ACC system and method of using such for changing a turbine blade to BOAS gap on an aircraft engine is disclosed. The ACC system may comprise a first ring, a first supply line and a first flow control assembly. The first ring may be configured to substantially encircle a portion of a case assembly that is disposed around an aircraft engine turbine. The first ring may include a plurality of segments that each define a chamber, an inlet port and a plurality of outlet ports. At least a portion of the outlet ports may be configured to be disposed adjacent to the case. The first supply line may be operatively connected to a first segment of the plurality of segments. The first flow control assembly may be operatively connected to the first supply line and configured to meter the flow of cool air into the first segment.