Abstract:
The present disclosure relates to a first seal for an aircraft blade outer air seal ("BOAS") comprising a first portion comprising a first channel and a second channel, and a second portion comprising a first projection and a second projection, wherein the first projection slidably couples to the first channel and the second projection slidably couples to the second channel. The first portion and/or the second portion may be coated with a low friction substance. The first portion may be coupled to a vane support and/or a BOAS, and the second portion may be coupled to a first OAS support. The first seal may enable a radial translation of the BOAS in response to an aircraft maneuver.
Abstract:
A blade outer air seal (BOAS) segment according to an exemplary embodiment of the present disclosure can include a seal body having a radially inner face and a radially outer face that circumferentially extend between a first mate face and a second mate face and axially extend between a leading edge face and a trailing edge face. At least one of the first mate face, the second mate face, the radially outer face and the radially inner face can include an inner wall having a ledge and an undercut passage radially inward from the ledge that extends uninterrupted along a length of the ledge.
Abstract:
A seal for a gas turbine engine comprises a seal body extending from a first end to a second end. A wrap extends at least partially around the first and second ends of the seal body. A gas turbine engine is also disclosed.
Abstract:
A gas turbine engine component according to an exemplary aspect of the present disclosure includes, among other things, a body having a first outer face meeting a second outer face at an intersection, the body having a plurality of apertures extending from an opening in the first outer face to an opening on the second outer face; and a coating filling at least a portion of the plurality of apertures.
Abstract:
A seal assembly, includes a first brush supported between first and second plates, a second brush supported on the first and second plates transverse to the first brush seal, and a third plate attached to the second brush.
Abstract:
An airfoil includes an airfoil body having a first section and a second section that differ by coefficient of thermal expansion. The second section is arranged in thermomechanical juxtaposition with the first section such that the first section and the second section cooperatively thermomechanically control a profile of the airfoil body responsive to varying thermal conditions.
Abstract:
A turbine engine system comprising a turbine engine air seal having at least one contact portion. The turbine engine air seal having a MAXMET composite bonded to at least one contact portion.
Abstract:
A clearance control system for a gas turbine engine is provided. The system includes an inner axial wall that extends between a forward wall and an aft wall. The system also includes an outer axial wall that extends parallel to the inner axial wall to pivotally receive a full hoop thermal control ring.
Abstract:
A gas turbine engine component includes a structure that provides a cooling passage. The structure has a turbulator with a pedestal joining opposing first and second surfaces. The turbulator includes first and second legs spaced apart from one another and adjoining the pedestal. The first leg adjoins the second surface, and the second leg adjoins the first surface.