Abstract:
An exemplary turbomachine clutch assembly includes a clutch that moves from a first position to a second position in response to rotation of a turbomachine fan at a speed greater than a threshold speed. The clutch permits rotation of the turbomachine fan in a first direction whether the clutch is in the first position or the second position. The clutch limits rotation of the turbomachine fan in an opposite, second direction when the clutch is in the first position.
Abstract:
The present disclosure is applicable to all gear trains using a journal bearing as a means of supporting gear shaft rotation. It is related in some embodiments to a system and method for supplying lubricant to the journal bearings of a gear-turbofan engine gear train when the fan rotor is subjected to a wind-milling condition in both directions, either clockwise or counter-clockwise.
Abstract:
A gas turbine engine includes a geared architecture with a multiple of intermediate gears, and a baffle with an oil scavenge scoop adjacent to each of the multiple of intermediate gears. A geared architecture and method are also disclosed.
Abstract:
A gas turbine engine (20) and method for containing a fan inside an engine after a fan thrust bearing assembly failure. The engine (20) may comprise a fan (42), a housing (100) including a compartment (102), a fan shaft (104) inside the compartment (102) and comprising a bowl (108), a support structure (110) inside the compartment (102), a speed sensor pickup (114) mounted on the outer surface (120) of the bowl (108), a speed sensor (112) mounted on the support structure (110), and a fan thrust bearing assembly (41) disposed forward of the bowl (108). The fan thrust bearing assembly (41) including a bearing (126). The speed sensor (112) and the sensor pickup (114) define a defining a sensor gap (116). The bearing (126) and the outer surface (120) defining a fan thrust bearing gap (130), wherein the sensor gap (116) is less than the fan thrust bearing gap.
Abstract:
An example epicyclic gear train assembly includes a flexure pin received by a carrier. The flexure pin and the carrier respectively include first and second pin apertures configured to receive a retainer pin. The flexure pin further includes a lubricant conduit separate from the first pin aperture.