Abstract:
A powder classification apparatus (10; 110; 210) includes a first chamber (12; 112; 212) that includes a fluidized bed and has an inlet (16; 116; 216A) and an outlet (18; 118; 218), the inlet (16; 116; 216A) configured to receive a gas (G) and distribute the gas (G) in a uniform flow through the first chamber (12; 112; 212), the first chamber (12; 112; 212) configured to receive a powder (P) and the gas (G) and create a fluidization zone, the outlet (18; 118; 218) configured to allow at least a portion of the powder (P) to exit the first chamber (12; 112; 212); and a second chamber (14; 114; 214) having a powder inlet (24; 124; 224) configured to accept at least a portion of the powder (P) from the outlet (18; 118; 218) in the first chamber (12; 112; 212) caused by at least a portion of the powder (P) being ejected from the first chamber (12; 112; 212) by the gas (G).
Abstract:
A cost-effective method of forming a hydrophobic coating on a substrate and coated substrates are disclosed. Specifically, the method comprises applying amorphous powders of an alloy to the substrate through a cold spray process. Also provided is a novel type of hydrophobic coating made of metallic glasses or amorphous alloys. The hydrophobic coatings offer advantages such as, low cost, low maintenance, and high corrosion resistance.
Abstract:
One embodiment includes a powder spheroidizing method. The method includes loading a powder into a fluidized bed assembly, fluidizing at least some of the powder in the fluidized bed assembly using an inert gas, and heating the powder while fluidized in the fluidized bed assembly.
Abstract:
One embodiment includes a method for enhancing bond strength between a powder deposit and a substrate. Powder is deposited on the substrate. Powder is shot peened with peening media that is harder than both the powder and the substrate to produce bond strength between the powder and the substrate that is at least twice bond strength between the powder and the substrate without shot peening.
Abstract:
A powder feeder for a cold spray system includes a rotatable drum body, a housing surrounding the drum body, and a support structure. The support structure couples to the housing and supports the housing such that the drum body rotates about a rotation axis to provide in-situ blending of powder disposed within an interior of the drum body.
Abstract:
A system comprises a furnace, a fluidized bed assembly and a powder bed. The fluidized bed assembly is positioned in the furnace and comprises an outer chamber having an outer chamber inlet for receiving gas, an inner chamber positioned inside of the outer chamber. The inner chamber comprises an inner chamber inlet in fluid communication with the outer chamber, and an outlet through which the gas may exit the inner chamber and the outer chamber. The powder bed is disposed in the inner chamber.
Abstract:
The invention provides a self-peening feedstock material for cold spray deposition comprising a higher ductility matrix material and a hardened particle.
Abstract:
A cold spray nozzle assembly is disclosed that includes a nozzle body formed from a first material and an adapter body formed from a second material wherein each body has a passage the communicates with one another along an axis. The nozzle body is formed from a polymeric material and the adapter body formed from a metallic material.
Abstract:
A method for peening a surface of a material is disclosed. The method may include producing repeated, separated and high speed liquid drops and moving the liquid drops across the surface to be peened. The liquid drops are essentially free of air bubbles and the velocity of the liquid drops is at least 500 ft/sec. A peening apparatus to produce repeated, separated and high speed liquid drops is also disclosed. The apparatus may comprise a storage tank, a nozzle, a pump, an accumulator, a regulator and an actuator. The apparatus may control the volume and velocity of the produced liquid drops as well as the frequency of the liquid drop production.