Abstract:
One aspect of the invention is concerned with cannabimimetic heteroindane analogs having affinities and/or selectivities for a cannabinoid receptor. A further aspect of the invention is concerned with pharmaceutical preparations employing the inventive analogs and methods of administering therapeutically effective amounts of the inventive analogs to provide a physiological effect.
Abstract:
One aspect of the invention is concerned with cannabimimetic heteroindane analogs having affinities and/or selectivities for a cannabinoid receptor. A further aspect of the invention is concerned with pharmaceutical preparations employing the inventive analogs and methods of administering therapeutically effective amounts of the inventive analogs to provide a physiological effect.
Abstract:
One aspect of the invention is concerned with cannabimimetic pyrazole analogs. Another aspect of the invention is concerned with new and improved pyrazole analogs having high affinities and/or selectivities for the GB 1 cannabinoid receptor. A further aspect of the invention is concerned with pharmaceutical preparations employing the inventive analogs and methods of administering therapeutically effective amounts of the inventive analogs to provide a physiological effect.
Abstract:
Disclosed is a method of inhibiting anandamide amidase in an individual or animal and novel inhibitors of anandamide amidase. The disclosed method and novel compounds can be used to reduce pain in an individual or animal suffering from pain, reducing nausea in an individual undergoing chemotherapy, for example cancer chemotherapy, suppressing appetite in an individual, reducing intraocular pressure in the eye of an individual or animal suffering from glaucoma and suppressing the immune system in an individual with an organ transplant.
Abstract:
Disclosed are biologically active hetero pyrrole analogs such as imidazoles, thiazoles, oxazoles and pyrazoles capable of interacting with the CB1 and/or CB2 cannabinoid receptors. Aspects disclose hetero pyrrole analogs acting as CB1 and/or CB 1 receptor antagonists, having selectivity for the CB 1 or CB2 receptor, acting as neutral antagonists, acting preferentially on CB 1 receptors located in the peripheral nervous system, and/or acting as nitric oxide donors. Pharmaceutical preparations employing the disclosed analogs and methods of administering therapeutically effective amounts of the disclosed analogs to provide a physiological effect are also disclosed.
Abstract:
Disclosed are compounds of formula R-X-Y that may be used to inhibit the action of fatty acid amide hydrolase (FAAH). Inhibition of fatty acid amide hydrolase (FAAH) will slow the normal degradation and inactivation of endogenous cannabinoid ligands by FAAH hydrolysis and allow higher levels of those endogenous cannabinergic ligands to remain present. These higher levels of endocannabinoid ligands provide increased stimulation of the cannabinoid CBl and CB2 receptors and produce physiological effects related to the activation of the cannabinoid receptors. They will also enhance the effects of other exogenous cannabinergic ligands and allow them to produce their effects at lower concentrations as compared to systems in which fatty acid amide hydrolase (FAAH) action is hot inhibited. Thus, a compound that inhibits the inactivation of endogenous cannabinoid ligands by fatty acid amide hydrolase (FAAH) may increase the levels of endocannabinoids and, thus, enhance the activation of cannabinoid receptors. Thus, the compound may not directly modulate the cannabinoid receptors but has the effect of indirectly stimulating the cannabinoid receptors by increasing the levels of endocannabinoid ligands. It may also enhance the effects and duration of action of other exogenous cannabinergic ligands that are administered in order to elicit a cannabinergic response.
Abstract:
One aspect of this disclosure relates generally to lipid compounds that exert diverse effects in the endocannabinoid system, such as regulating CB1 and CB2 receptor or moderating other bio-macromolecules within the endocannabinoid system. Some of the compounds showed improved receptor binding affinity, and/or improved receptor subtype selectivity, and improved bio-stability. Some of the compounds exhibit activities to regulate the enzymes that moderate the bio-disposal of endogenous cannabinoids, such as the fatty acid amide hydrolase (FAAH). Some of the compounds exhibit activities to inhibit the anandamide transporter. Other aspects of the invention are pharmaceutical preparations employing these ligands and methods of administering therapeutically effective amounts of the preparations to provide a physiological effect.
Abstract:
Novel tricyclic cannabinoid compounds are presented. Some of these compounds exhibit fluorescence properties. The fluorescent cannabinoid compounds are typically endogenously fluorescent. Some of these compounds, when administered in a therapeutically effective amount to an individual or animal, result in a sufficiently high level of that compound in the individual or animal to cause a physiological response. The physiological response useful to treat a number of physiological conditions.
Abstract:
Novel biphenyl and biphenyl-like cannabinoid compounds are presented. These compounds, when administered in a therapeutically effective amount to an individual or animal, result in a sufficiently high level of that compound in the individual or animal to cause a physiological response. The physiological response useful to treat a number of physiological conditions.
Abstract:
Fatty acid amide hydrolase (FAAH) is an enzyme responsible for the degradation of oleamide (an endogenous sleep-inducing lipid) and anandamide (an endogenous ligand for cannabinoid receptors). Disclosed herein are potent inhibitors of FAAH and methods for their use for treating a variety of disorder, including hypertension and cardiac hypertrophy.