Abstract:
A hydroprocessing catalyst or catalyst precursor has been developed. The catalyst is a crystalline transition metal tungstate material or metal sulfides derived therefrom. The hydroprocessing using the crystalline ammonia transition metal tungstate material may include hydrodenitrification, hydrodesulfurization, hydrodemetallation, hydrodesilication, hydrodearomatization, hydroisomerization, hydrotreating, hydrofining, and hydrocracking.
Abstract:
A hydroprocessing catalyst or catalyst precursor has been developed. The catalyst is a poorly crystalline transition metal molybdotungstate material or a metal sulfide decomposition product thereof. The hydroprocessing using the crystalline ammonia transition metal molybdotungstate material may include hydrodenitrification, hydrodesulfurization, hydrodemetallation, hydrodesilication, hydrodearomatization, hydroisomerization, hydrotreating, hydrofining, and hydrocracking.
Abstract:
A hydroprocessing catalyst has been developed. The catalyst is a crystalline transition metal molybdotungstate material. The hydroprocessing using the crystalline ammonia transition metal molybdotungstate material may include hydrodenitrification, hydrodesulfurization, hydrodemetallation, hydrodesilication, hydrodearomatization, hydroisomerization, hydrotreating, hydrofining, and hydrocracking.
Abstract:
A unique crystalline bis-ammonia metal molybdate material has been developed. The material may be used as a hydroprocessing catalyst. The hydroprocessing may include hydrodenitrification, hydrodesulfurization, hydrodemetallation, hydrodearomatization, hydrodesilication, hydroisomerization, hydrotreating, hydrofining, and hydrocracking.
Abstract:
A unique crystalline bis-ammonia transition metal molybdotungstate material has been developed. The material may be used as a hydroprocessing catalyst. The hydroprocessing may include hydrodenitrification, hydrodesulfurization, hydrodemetallation, hydrodearomatization, hydrodesilication, hydroisomerization, hydrotreating, hydrofining, and hydrocracking.
Abstract:
A poorly crystalline mixed metal manganese oxide material. The mixed metal manganese oxide material may be used for making a cathode for a rechargeable battery. Generally, the mixed metal manganese oxide includes: manganese oxide; copper, silver, gold, or a combination thereof; a first additional cation selected from the group consisting of: bismuth, lead, and mixtures thereof; and a second additional cation selected from the group consisting of: lithium, sodium, potassium, cesium, rubidium, beryllium, magnesium, calcium, strontium, barium, NR4+, or a combination thereof, with R being, hydrogen, an alkyl group, an aryl group, or combinations thereof. The amorphous composition has an essentially amorphous x-ray powder diffraction pattern.
Abstract:
A highly active trimetallic mixed transition metal oxide material has been developed. The material may be sulfided to generate metal sulfides which are used as a catalyst in a conversion process such as hydroprocessing. The hydroprocessing may include hydrodenitrification, hydrodesulfurization, hydrodemetallation, hydrodesilication, hydrodearomatization, hydroisomerization, hydrotreating, hydrofining, and hydrocracking.
Abstract:
A hydroprocessing catalyst has been developed. The catalyst is a unique crystalline transition metal oxy-hydroxide molybdotungstate material. The hydroprocessing using the crystalline ammonia transition metal oxy-hydroxide molybdotungstate material may include hydrodenitrification, hydrodesulfurization, hydrodemetallation, hydrodesilication, hydrodearomatization, hydroisomerization, hydrotreating, hydrofining, and hydrocracking.
Abstract:
A process for removing Hg 2+ ions from a liquid stream is disclosed. The process involves contacting the liquid stream with specified UOP Zeolitic Materials. These molecular sieves are particularly effective in removing Hg 2+ ions from aqueous streams even in the presence of Mg 2+ and Ca 2+ ions. The effective molecular sieves have an intermediate range of Si/Al ratios between 2 and 20 and preferably between 3 and 10.
Abstract:
A homogenously mixed metal manganese oxide. The mixed metal manganese oxide includes a homogenous mixture of manganese and at least two more metals. The additional metals may be cesium, nickel, copper, bismuth, cobalt, magnesium, iron, aluminum, scandium, vanadium, chromium, silver, gold, titanium, or, lead. A method of making the metal manganese oxide material includes mixing salts of manganese and the additional metals. The mixture may be activated and digested at an elevated temperature. Also, a battery having a cathode made from the homogenously mixed metal manganese oxide.