Abstract:
A cathode composition for a lithium-ion cell or battery of the general formula: Li1+xMn1-xO2, wherein the composition is in the form of a single phase having a rock salt crystal structure such that an x-ray diffraction pattern of the composition has an absence of peaks below a 2θ value of 35; and the value of x is greater than 0, and equal to or less than 0.3. The compound is also formulated into a positive electrode, or cathode, for use in an electrochemical cell.
Abstract:
A process for water removal and/or recycling of sodium sulphate and/or sodium dithionate containing liquors derived from processing a cobalt resource derived from components of lithium ion batteries comprising steps of deriving from the cobalt resource a solution containing cobalt sulphate and cobalt dithionate, precipitation of cobalt as cobaltous carbonate or cobaltous hydroxide followed by removal thereof from the liquor, crystallization of sodium sulphate and sodium dithionate and removal of resulting crystals, followed by heating of the crystals to anhydrous sodium sulphate, sulphur dioxide and water and then separating the anhydrous sodium sulphate.
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Nanopartikeln aus einer flüssigen Mischung aus mindestens einem Präkursor und mindestens einem Lösungsmittel in einem kontinuierlich durchströmten Reaktor umfassend die Schritte: a) Einführen von mindestens einem sauerstoffhaltigen Gaseingangsstrom (E) mit einer Temperatur (T E ) in den mindestens einen Reaktor, b) Zugabe von mindestens einem Brennstoff (B) mit einer Temperatur (T B ) in den sauerstoffhaltigen Gaseingangsstrom, wobei Brennstoff und sauerstoffhaltiger Gaseingangsstrom eine homogene zündfähige Mischung (ZM) mit einer Temperatur (T ZM ) ausbilden, wobei die Temperatur der homogenen zündfähigen Mischung (T ZM ) oberhalb der Selbstentzündungstemperatur (T EntzZM ) der homogenen zündfähigen Mischung liegt; c) Einbringen von mindestens einer Präkursor-Lösungsmittel-Mischung in die homogene zündfähige Mischung (ZM); d) Selbstentzündung der zündfähigen Mischung (ZM) aus sauerstoffhaltigem Gas und Brennstoff nach einer Zündverzugszeit (t vz ) unter Bildung einer stabilisierten Flamme und Umsetzung der Präkursor-Lösungsmittel-Mischung in der stabilisierten Flamme unter Ausbildung von Nanopartikeln aus dem Präkursor, und e) Entfernen der gebildeten Nanopartikel aus dem Reaktor.
Abstract:
A process for producing a metal oxide powder comprising: providing a precursor solution or dispersion containing a metal complex;spraying the precursor solution on to a heated substrate in the presence of water, thereby depositing material on the substrate; drying the deposited material; and removing the deposited material from the substrate to produce the metal oxide powder.
Abstract:
An oxygen carrier (OC) for use in Chemical Looping technology with Oxygen Uncoupling (CLOU) for the combustion of carbonaceous fuels, in which commercial grade metal oxides selected from the group consisting of Cu, Mn, and Co oxides and mixtures thereof constitute a primary oxygen carrier component. The oxygen carrier contains, at least, a secondary oxygen carrier component which is comprised by low-value industrial materials which already contain metal oxides selected from the group consisting of Cu, Mn, Co, Fe, Ni oxides or mixtures thereof. The secondary oxygen carrier component has a minimum oxygen carrying capacity of 1 g of O 2 per 100 g material in chemical looping reactions. Methods for the manufacture of the OC are also disclosed.
Abstract:
Methods are presented for synthesizing a metal precursor for a cathode-active material. The methods include adding urea to a solution comprising dissolved ions of at least one transition metal selected from Mn, Co, and Ni. The methods also include increasing a pH of the aqueous solution to a threshold pH. The methods additionally include heating the aqueous solution to precipitate a compound that includes the at least one transition metal. Such heating may involve urea decomposition. Methods are also presented that include filtering the compound from the solution and contacting the compound with at least a lithium precursor to produce a reactant charge. In these methods, the reactant charge is calcined to produce the cathode-active material. Other methods are presented.