Abstract:
Embodiments of the present disclosure pertain to methods of making a carbon nanotube hybrid material by depositing a catalyst solution onto a carbon-based material, and growing carbon nanotubes on the carbon-based material such that the grown carbon nanotubes become covalently linked to the carbon-based material through carbon-carbon bonds. The catalyst solution includes a metal component (e.g., iron) and a buffer component (e.g., aluminum) that may be in the form of particles. The metal component of the particle may be in the form of a metallic core or metallic oxide core while the buffer component may be on a surface of the metal component in the form of metal or metal oxides. Further embodiments of the present disclosure pertain to the catalytic particles and carbon nanotube hybrid materials. The carbon nanotube hybrid materials of the present disclosure may be incorporated as electrodes (e.g., anodes or cathodes) in energy storage devices.
Abstract:
Various embodiments of the present invention pertain to memresistor cells that comprise: (1) a substrate; (2) an electrical switch associated with the substrate; (3) an insulating layer; and (3) a resistive memory material. The resistive memory material is selected from the group consisting of SiO x , SiO x H, SiO x N y , SiO x N y H, SiO x Cz, SiO x C z H, and combinations thereof, wherein each of x, y and z are equal or greater than 1 or equal or less than 2. Additional embodiments of the present invention pertain to memresistor arrays that comprise: (1) a plurality of bit lines; (2) a plurality of word lines orthogonal to the bit lines; and (3) a plurality of said memresistor cells positioned between the word lines and the bit lines. Further embodiments of the present invention provide methods of making said memresistor cells and arrays.
Abstract translation:本发明的各种实施方案涉及包含以下各项的忆阻电池单元:(1)衬底; (2)与基板相关联的电开关; (3)绝缘层; 和(3)电阻性记忆材料。 电阻性存储器材料选自由SiO x,SiO x H,SiO x N y,SiO x N y H,SiO x C z,SiO x C z H及其组合组成的组,其中x,y和z中的每一个等于或大于1或等于或小于2。 本发明涉及包括:(1)多个位线的磁阻阵列; (2)与位线正交的多个字线; 和(3)位于字线和位线之间的多个所述再生电阻单元。 本发明的另外的实施例提供了制造所述记忆体电池和阵列的方法。
Abstract:
The present invention concerns methods and compositions concerning a long- acting biocompatible heavier-than-water internal tamponade agent for use in vitreoretinal surgery, for example. In specific cases, the invention includes a particular silicone oil in compositions and methods encompassed herein.
Abstract:
Embodiments of the present disclosure pertain to methods of making a carbon nanotube hybrid material by depositing a catalyst solution onto a carbon-based material, and growing carbon nanotubes on the carbon-based material such that the grown carbon nanotubes become covalently linked to the carbon-based material through carbon-carbon bonds. The catalyst solution includes a metal component (e.g., iron) and a buffer component (e.g., aluminum) that may be in the form of particles. The metal component of the particle may be in the form of a metallic core or metallic oxide core while the buffer component may be on a surface of the metal component in the form of metal or metal oxides. Further embodiments of the present disclosure pertain to the catalytic particles and carbon nanotube hybrid materials. The carbon nanotube hybrid materials of the present disclosure may be incorporated as electrodes (e.g., anodes or cathodes) in energy storage devices.
Abstract:
Embodiments of the present disclosure pertain to methods of making a carbon nanotube hybrid material by depositing a catalyst solution onto a carbon-based material, and growing carbon nanotubes on the carbon-based material such that the grown carbon nanotubes become covalently linked to the carbon-based material through carbon-carbon bonds. The catalyst solution includes a metal component (e.g., iron) and a buffer component (e.g., aluminum) that may be in the form of particles. The metal component of the particle may be in the form of a metallic core or metallic oxide core while the buffer component may be on a surface of the metal component in the form of metal or metal oxides. Further embodiments of the present disclosure pertain to the catalytic particles and carbon nanotube hybrid materials. The carbon nanotube hybrid materials of the present disclosure may be incorporated as electrodes (e.g., anodes or cathodes) in energy storage devices.
Abstract:
Methods and compositions for use in drilling a wellbore into an earthen formation that includes the use of a graphene-based material, where the graphene-based material may be at least one of graphene, graphene oxide, chemically converted graphene, and derivatized graphite oxide are shown and described. In certain examples, the methods and compositions reduce permeability damage and/or stabilize shales.