Abstract:
Embodiments of the present disclosure pertain to methods of making a carbon nanotube hybrid material by depositing a catalyst solution onto a carbon-based material, and growing carbon nanotubes on the carbon-based material such that the grown carbon nanotubes become covalently linked to the carbon-based material through carbon-carbon bonds. The catalyst solution includes a metal component (e.g., iron) and a buffer component (e.g., aluminum) that may be in the form of particles. The metal component of the particle may be in the form of a metallic core or metallic oxide core while the buffer component may be on a surface of the metal component in the form of metal or metal oxides. Further embodiments of the present disclosure pertain to the catalytic particles and carbon nanotube hybrid materials. The carbon nanotube hybrid materials of the present disclosure may be incorporated as electrodes (e.g., anodes or cathodes) in energy storage devices.
Abstract:
본 발명은 반응영역을 구비한 원통형 고온 반응기 본체, 본체의 반응영역에 방사물질 및 운반기체를 주입하는 유입구, 반응영역을 가열하는 가열수단, 본체의 하단에 설치되어 탄소나노튜브섬유를 배출하는 배출구, 배출되는 탄소나노튜브섬유를 수집하는 권취수단, 배출구 및 권취수단 사이에 구비된 가이드, 및 가이드에 전압을 가하는 전압기를 포함하고, 배출되는 탄소나노튜브섬유에 전압을 가하여 탄소나노튜브섬유 내에 포함되어 있는 불순물을 제거하는 탄소나노튜브섬유 제조장치에 관한 것이다.
Abstract:
Die Erfindung betrifft ein Verfahren zum Trennen einer an einer Keimstruktur (2) abgeschiedenen Kohlenstoffstruktur (1) beispielsweise Graphene, Carbon-Nanotubes oder Halbleiter-Nanowires von der Keimstruktur (2). Um die Herstellung von Kohlenstoffstrukturen zu vereinfachen und insbesondere ein Verfahren anzugeben, mit dem das Trennen der Kohlenstoffstruktur von der Keimstruktur innerhalb der Prozesskammer, in der die Abscheidung erfolgt, wird nachstehend vorgeschlagen, Bereitstellen einer an einer Keimstruktur (2) abgeschiedenen Kohlenstoffstruktur in einer Prozesskammer eines CVD-Reaktors; Aufheizen des die Keimstruktur (2) und die Kohlenstoffstruktur (1) aufweisenden Substrates auf eine Prozesstemperatur; Einspeisen zumindest eines Ätzgases mit der Summenformel AOmXn, AOmXnYp oder AmXn, wobei A aus einer Gruppe von Elementen ausgewählt ist, die S, C, N enthält, wobei O Sauerstoff ist, wobei X, Y verschiedene Halogene sind, und m, n, p natürliche Zahlen größer Null sind; Umwandeln der Keimstruktur (2) durch eine chemische Reaktion mit dem Ätzgas in ein gasförmiges Reaktionsprodukt; Entfernen des gasförmigen Reaktionsproduktes aus der Prozesskammer mittels eines Trägergasflusses.
Abstract:
A method for producing catalyst particles is disclosed. The method comprises: forming a solution comprising a solvent and a material including catalyst material, wherein the material including catalyst material is dissolved or emulsified in the solvent; aerosolizing the formed solution to produce droplets comprising the material including catalyst material; and treating the droplets to produce catalyst particles or intermediate catalyst particles from the material including catalyst material comprised in the droplets. A method for producing nanomaterials, an apparatus,a catalyst particle and a solution droplet for the production of a catalyst particle are also disclosed.
Abstract:
A carbon nanotube (CNT) based electrode and method of making the same is disclosed. The CNT based electrode can have a microelectrode made substantially from a substantially inert metal, a first CNT sheet and a second CNT sheet, wherein the first and second CNT sheets are embedded in a collagen film.
Abstract:
Provided herein are electrochemical systems and related methods of making and using electrochemical systems. Electrochemical systems of the invention implement novel cell geometries and composite carbon nanomaterials based design strategies useful for achieving enhanced electrical power source performance, particularly high specific energies, useful discharge rate capabilities and good cycle life. Electrochemical systems of the invention are versatile and include secondary lithium ion cells, such as silicon - sulfur lithium ion batteries, useful for a range of important applications including use in portable electronic devices. Electrochemical cells of the present invention also exhibit enhanced safety and stability relative to conventional state of the art lithium ion secondary batteries by using prelithiated active materials to eliminate the use of metallic lithium and incorporating carbon nanotube and/or graphene, composite electrode structures to manage residual stress and mechanical strain arising from expansion and contraction of active materials during charge and discharge.