GRAPHENE NANORIBBON COMPOSITES AND METHODS OF MAKING THE SAME
    3.
    发明申请
    GRAPHENE NANORIBBON COMPOSITES AND METHODS OF MAKING THE SAME 审中-公开
    石墨纳米星复合材料及其制备方法

    公开(公告)号:WO2012112435A1

    公开(公告)日:2012-08-23

    申请号:PCT/US2012/024846

    申请日:2012-02-13

    CPC classification number: C09J9/02 B82Y30/00 B82Y40/00 C01B32/184 C01B2204/06

    Abstract: In some embodiments, the present invention provides graphene nanoribbon composites that include a polymer matrix and graphene nanoribbons that are dispersed in the polymer matrix. In more specific embodiments, the polymer matrix of the composite is an epoxy matrix, and the graphene nanoribbons of the composite include functionalized graphene nanoribbons. In further embodiments, the composites of the present invention further comprise metals, such as tin, copper, gold, silver, aluminum and combinations thereof. Additional embodiments of the present invention pertain to methods of making the graphene nanoribbon composites of the present invention. In some embodiments, such methods include mixing graphene nanoribbons with polymer precursors to form a mixture, and then curing the mixture to form the composite.

    Abstract translation: 在一些实施方案中,本发明提供石墨烯纳米纤维复合材料,其包括分散在聚合物基质中的聚合物基质和石墨烯纳米带。 在更具体的实施方案中,复合材料的聚合物基质是环氧基质,并且复合材料的石墨烯纳米带包括官能化的石墨烯纳米带。 在另外的实施方案中,本发明的复合材料还包括金属,例如锡,铜,金,银,铝及其组合。 本发明的另外的实施方案涉及制备本发明的石墨烯纳米纤维复合材料的方法。 在一些实施方案中,这样的方法包括将石墨烯纳米带与聚合物前体混合以形成混合物,然后固化混合物以形成复合材料。

    SIOX-BASED NONVOLATILE MEMORY ARCHITECTURE
    5.
    发明申请
    SIOX-BASED NONVOLATILE MEMORY ARCHITECTURE 审中-公开
    基于SIOX的非易失性存储器架构

    公开(公告)号:WO2012071100A1

    公开(公告)日:2012-05-31

    申请号:PCT/US2011/050812

    申请日:2011-09-08

    Abstract: Various embodiments of the present invention pertain to memresistor cells that comprise: (1) a substrate; (2) an electrical switch associated with the substrate; (3) an insulating layer; and (3) a resistive memory material. The resistive memory material is selected from the group consisting of SiO x , SiO x H, SiO x N y , SiO x N y H, SiO x Cz, SiO x C z H, and combinations thereof, wherein each of x, y and z are equal or greater than 1 or equal or less than 2. Additional embodiments of the present invention pertain to memresistor arrays that comprise: (1) a plurality of bit lines; (2) a plurality of word lines orthogonal to the bit lines; and (3) a plurality of said memresistor cells positioned between the word lines and the bit lines. Further embodiments of the present invention provide methods of making said memresistor cells and arrays.

    Abstract translation: 本发明的各种实施方案涉及包含以下各项的忆阻电池单元:(1)衬底; (2)与基板相关联的电开关; (3)绝缘层; 和(3)电阻性记忆材料。 电阻性存储器材料选自由SiO x,SiO x H,SiO x N y,SiO x N y H,SiO x C z,SiO x C z H及其组合组成的组,其中x,y和z中的每一个等于或大于1或等于或小于2。 本发明涉及包括:(1)多个位线的磁阻阵列; (2)与位线正交的多个字线; 和(3)位于字线和位线之间的多个所述再生电阻单元。 本发明的另外的实施例提供了制造所述记忆体电池和阵列的方法。

    PREPARATION OF GRAPHENE NANORIBBONS FROM CARBON NANOTUBES
    7.
    发明申请
    PREPARATION OF GRAPHENE NANORIBBONS FROM CARBON NANOTUBES 审中-公开
    碳纳米管从碳纳米管的制备

    公开(公告)号:WO2010022164A1

    公开(公告)日:2010-02-25

    申请号:PCT/US2009/054334

    申请日:2009-08-19

    Abstract: Methods for producing macroscopic quantities of oxidized graphene nanoribbons are disclosed herein. The methods include providing a plurality of carbon nanotubes and reacting the plurality of carbon nanotubes with at least one oxidant to form oxidized graphene nanoribbons. The at least one oxidant is operable to longitudinally open the carbon nanotubes. In some embodiments, the reacting step takes place in the presence of at least one acid. In some embodiments, the reacting step takes place in the presence of at least one protective agent. Various embodiments of the present disclosure also include methods for producing reduced graphene nanoribbons by reacting oxidized graphene nanoribbons with at least one reducing agent. Oxidized graphene nanoribbons, reduced graphene nanoribbons and compositions and articles derived therefrom are also disclosed herein.

    Abstract translation: 本文公开了生产宏观量的氧化石墨烯纳米带的方法。 所述方法包括提供多个碳纳米管并使多个碳纳米管与至少一种氧化剂反应以形成氧化石墨烯纳米带。 至少一种氧化剂可操作以纵向打开碳纳米管。 在一些实施方案中,反应步骤在至少一种酸的存在下进行。 在一些实施方案中,反应步骤在至少一种保护剂的存在下进行。 本公开的各种实施方案还包括通过使氧化石墨烯纳米带与至少一种还原剂反应来生产还原的石墨烯纳米带的方法。 氧化石墨烯纳米带,还原石墨烯纳米带以及由其衍生的组合物和制品也在本文中公开。

    POLYMERIZATION INITIATED AT THE SIDEWALLS OF CARBON NANOTUBES
    8.
    发明申请
    POLYMERIZATION INITIATED AT THE SIDEWALLS OF CARBON NANOTUBES 审中-公开
    碳纳米管的开发聚合

    公开(公告)号:WO2005030858A3

    公开(公告)日:2005-06-23

    申请号:PCT/US2004019769

    申请日:2004-06-21

    Abstract: The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

    Abstract translation: 本发明涉及芳基卤化物(例如芳基溴化物)官能化碳纳米管可以用于阴离子聚合方法以形成具有改进的聚合物基质分散能力的聚合物 - 碳纳米管材料。 在该方法中,芳基卤化物与烷基锂物质反应,或与金属反应,分别用芳基 - 锂或芳基 - 金属键代替芳基 - 溴键。 还已经发现,其它官能化碳纳米管在去质子化脱质子化之后,可以类似地用于阴离子聚合方法中以形成聚合物 - 碳纳米管材料。 另外或者可选地,可以进行开环聚合方法。 所得材料由于与未结合的聚合物类似物相比具有增强的强度和增强能力,可以自己使用。 另外,这些材料也可以与预先形成的聚合物混合以建立纳米管在其它难分散的基质中的相容性和增强的分散,导致显着改善的材料性质。 所得聚合物 - 碳纳米管材料由于其分散能力和生物降解性的改善而可用于药物递送过程中,并且也可用于支架以促进组织的细胞生长。

    SELF-ASSEMBLY OF MOLECULES AND NANOTUBES AND/OR NANOWIRES IN NANOCELL COMPUTING DEVICES, AND METHODS FOR PROGRAMMING SAME
    9.
    发明申请
    SELF-ASSEMBLY OF MOLECULES AND NANOTUBES AND/OR NANOWIRES IN NANOCELL COMPUTING DEVICES, AND METHODS FOR PROGRAMMING SAME 审中-公开
    NANOCELL计算设备中的分子和纳米体系和/或纳米单体的自组装及其编程方法

    公开(公告)号:WO2004068497A3

    公开(公告)日:2004-12-29

    申请号:PCT/US2004002266

    申请日:2004-01-28

    Abstract: An assembly of a NanoCell comprising a disordered array of metallic islands interlinked with molecules between metallic input/output leads and with disordered arrays of molecules and Au islands is disclosed. The NanoCell may function both as a memory device that is programmable post-fabrication. The assembled NanoCells exhibit reproducible switching behavior and at least two types of memory effects at room temperature. The switch-type memory is characteristic of a destructive read while the conductivity-type memory features a nondestructive read. Both types of s memory effects are stable for more than a week at room temperature and bit level ratios (0:1) of the conductivity-type memory have been observed to be as high as 10 :1 and reaching 10 :1 upon ozone treatment which likely destroys extraneous leakage pathways. The invention demonstrates the efficacy of a disordered nano-scale array for high-yielding switching and memory while mitigating the arduous task of nano-scale patterning.

    Abstract translation: 公开了包含与金属输入/输出引线之间的分子互连并且具有无序的分子阵列和Au岛的金属岛的无序阵列的纳米晶体组件。 NanoCell可以兼作可编程后期制作的存储器件。 组装的NanoCells在室温下表现出可重现的切换行为和至少两种记忆效应。 开关型存储器是具有破坏性读取的特征,而导电型存储器具有非破坏性读取。 两种类型的记忆效应在室温下稳定超过一周,并且观察到导电型存储器的位电平比(0:1)高达10 4:1并达到10 <6 > 1:臭氧处理可能会破坏外部泄漏通道。 本发明证明了无序纳米尺度阵列在高产量切换和记忆方面的功效,同时减轻了纳米尺度图案的艰巨任务。

Patent Agency Ranking