Abstract:
A dual expansion anchor configured for use in anchoring an implanting portion to an anchor point. A dual expansion anchor can be of particular use in anchoring soft tissue to a bone. A dual expansion anchor can have an expander and an anchor body. The expander can be sized and shaped so that it causes radial expansion of a first end and a second end of the anchor body when the expander is moved to a deployment or expansion position within the anchor body. The anchor body can include features to positively retain the position of the expander when the anchor body is deployed.
Abstract:
Surgical anchors can be utilized to approximate and hold soft tissue in, at, or near a boney insertion site. In some examples, the surgical anchors include a receiving body and a fixation member such as, for example, a fixation screw. The receiving body may include an elongated connecting member and an aperture defined at a distal end of the elongated connecting member. The aperture may be configured to receive a surgical attachment element. Depending on the configuration, the receiving body may be connected to the fixation member via the elongated connecting member such that the fixation member can move relative to the receiving body. Movement of the fixation member relative to the receiving body may allow a user to control and adjust the amount of tension placed on the surgical attachment element, which may enhance the mechanics of a repair operation.
Abstract:
An apparatus for tethering an electrode lead to an anatomical structure within a patient using a coupling member is provided. An anchor configured to be secured to the anatomical structure and an electrode lead suitable for neuromuscular stimulation of spinal muscles and/or nerves innervating one or more muscles that contribute to spine stability may be used. The electrode lead is configured to be coupled to the anchor via the coupling member by securing a first end of the coupling member to the electrode lead and securing a second end of the coupling member to an eyelet of the anchor to place the electrode lead at a desired anatomical site within the patient.
Abstract:
A method of repairing a heart valve provides intravascular access for repair of a heart valve through a ventricular trans-septal approach. An external guide catheter can be inserted through a vein of a patient into the right ventricle via the right atrium. An internal guide catheter can be inserted through the external guide and can provide access to the septum for a puncture tool to create an opening through the septum to the left ventricle. The internal guide can then be advanced into the left ventricle and used to guide a deployment catheter that deploys a repair device onto the heart valve.
Abstract:
A tensioner system for use in tensioning graft strands in a knee reconstruction procedure can include a handle assembly, a tensioner assembly coupled relative to the handle assembly, and a drive shaft slidably received through and supported by the handle assembly. The tensioner assembly can include an arm support member rotatably coupled to the handle assembly and first and second arm members each rotatably coupled to lateral sides of the arm support member. Each arm member can include at least one graft attachment area adapted to be coupled to a graft strand. The arm support member can be configured to rotate about an axis perpendicular to a longitudinal axis of the tensioner system and perpendicular to an axis of rotation of each of the arm members. The drive shaft can include proximal and distal ends that extend beyond respective proximal and distal ends of the handle assembly.
Abstract:
A surgical suture system, suture, and tissue engaging member for tissue repair and reattachment of torn tissue to a tissue substrate, medical prosthesis or medical implant. The system includes the elongated flexible suture member having a plurality of longitudinally spaced protuberances along a length thereof and one or a plurality of the tissue engaging members each of which include two closely spaced apart locking apertures sized and configured to receive one of the suture members passed therethrough or a unique single locking aperture to allow longitudinal tensioning and/or restraining movement of the suture member in only one direction through the locking apertures for suture member tightening.
Abstract:
Implants for the treatment of pelvic support conditions and methods of implementing the same. The implants comprise relatively soft, flexible bodies and relatively strong arms extending in predetermined orientations therefrom. Methods and devices for placing the implants minimize trauma to the pelvic floor and provide well- anchored support to pelvic organs without interfering with sexual or other bodily functions.
Abstract:
A system for securing soft tissue to bone, the system comprising: a center post anchor comprising a body adapted for disposition in bone and having a retention element thereon for retaining the body in bone, the center post anchor comprising a suture having a first portion secured to the body and a second portion residing free of the body and adapted to be passed through the soft tissue which is to be secured to the bone; and a bridge post anchor comprising a body adapted for disposition in bone and having a retention element thereon for retaining the body in bone, the bridge post anchor including a capture element for capturing the second portion of the suture to the bone, such that when the center post anchor is disposed in bone and the second portion of the suture extends through in bone can secure the soft tissue to the bone.
Abstract:
A suture passer (2000) comprising: a proximal end (2010) comprising a handle (2011), an elongated central portion (2020) coupled to the proximal end and extending distally from the handle; a distal end (2030) comprising an upper jaw (2037) and a lower jaw (2038) and being configured to reversibly grasp tissue, the upper jaw and lower jaw each comprising at least one suture passage (2040a, 2040b), wherein the upper jaw and lower jaw are configured to reversibly engage a suture (2045); and a suture capture element (2070) disposed at the distal end, wherein the suture capture element is configured to reversibly engage a suture loop (2060) passing through at least one of the suture passages.