Abstract:
An intervertebral implant includes a body formed as an open lattice structure by a plurality of struts. Some of the struts of the plurality of struts intersect at nodes. The nodes can include an enlarged contact member that extends over the node and at least a portion of the width of some of the struts. Enlarged contact members may have an asymmetrical shape with respect to the intersection of struts. The enlarged contact members can provide improved bone contact for the implant. The plurality of struts can have a cross-sectional shape that includes a flattened portion. The flattened portion of the plurality of struts can provide improved bone contact for the implant. An additive manufacturing process can be used to build the implant in a substantially vertical direction.
Abstract:
The present invention relates to an implantable device configured to deliver, to an injured bone site, components for revascularisation and bone repair, the device comprising: a first osteoconductive scaffold component adapted to hold and deliver to the injured bone site, growth factors for inducing cellular events that initiate healing; and comprising a second osteoconductive scaffold component adapted to hold and deliver to the injured bone site, viable autologous osteogenic and/or angiogenic cells, and wherein the device also comprises a third scaffold component adapted to promote bone cell proliferation and vascularity, whereby the scaffold components provide a stable mechanical environment for promoting bone cell proliferation and vascularity. The present invention also relates to a method of manufacture of the implantable device.
Abstract:
Systems and methods of protecting allograft against radiation damage are disclosed. Systems and methods of incorporating additives such as radioprotectants into allograft tissue are also disclosed. The systems and methods comprise providing an allograft; cleaning the allograft; contacting the allograft with at least one radioprotectant, thereby obtaining a radioprotectant-doped allograft; contacting the radioprotectant-doped allograft with a supercritical fluid, thereby obtaining a radioprotectant doped and homogenized allograft.
Abstract:
A delivery system comprising an agent and a foldable covering including a first surface disposed with the agent and a second surface connectable with the first surface to intra-operatively dispose the covering in a selected configuration.
Abstract translation:输送系统包括药剂和可折叠覆盖物,所述覆盖物包括与药剂一起放置的第一表面和可与第一表面连接的第二表面,以手术方式将覆盖物置于选定构型。 p >
Abstract:
Provided herein are soluble bioactive factor solutions, grafting scaffolds containing the bioactive factor solutions, and methods of making and using the same.
Abstract:
Biomaterials, implants made therefrom, methods of making the biomaterial and implants, methods of promoting bone or wound healing in a mammal by administering the biomaterial or implant to the mammal, and kits that include such biomaterials, implants, or components thereof. The biomaterials may be designed to exhibit osteogenic, osteoinductive, ostcoconductive, and/or ostcostimulative properties.
Abstract:
Surgical grafts for the repair of bone defects, more particularly, surgical grafts that include demineralized bone fibers, are disclosed. Methods for making such grafts and for increasing their wettability and ensuring uniform density are also disclosed.
Abstract:
The invention provides a method of making a biological disc graft. In one embodiment, the biological disc graft is useful for treating back or neck pain. In one embodiment, the biological disc graft is useful for treating any joint pain. The invention also provides a method of implanting said biological disc graft in a way that is minimally invasive and less dangerous.
Abstract:
A bone repair composition and methods thereof include bone fibers made from cortical bone in which a plurality of bone fibers are made into various implant shapes conducive to introduction into a patient through minimally invasive surgery. The bone fiber compositions may be in the form of a pellet or cylinder. A method includes producing the bone fiber graft efficiently with control of key parameters of cohesiveness, rehydration and swelling of the bone fiber graft. Another method includes introducing the bone fiber graft into the cannula efficiently. A method is also provided to allow introduction of a bone graft into a patient by placing the implant in a tube and expelling it through the action of a plunger.
Abstract:
Osteoinductive and osteoconductive compositions for bone graft which utilize less allograft tissue, and methods for their production, are provided. The compositions and methods contain a combination of fibers of demineralized bone matrix from allograft bone and fibers of non-allograft bone material. The fibers of non-allograft bone material comprise non-fibrous demineralized bone matrix particles embedded within or disposed on the fibers of non-allograft bone material. The non-allograft fibers of the composition contain a bone void filler of collagen and one or more ceramics embedded with demineralized bone matrix particles. In some embodiments, the composition also contains a bioactive agent.