Abstract:
An apparatus and a process are disclosed for straw tube formation utilized in. manufacturing boron coated straw neutron detectors. A preferred embodiment of the process for creating a thin walled straw for use in a boron coated straw neutron detector comprises providing foil having a boron coating on a surface, forming the coated foil into a cylindrical tube having a longitudinal seam and the boron coated surface on the inside of the cylindrical, tube, and then ultrasonically welding closed the seam of die tube. Optionally, the cylindrical tube can then be drawn through a die to form a straw tube having a non-circular cross section, preferably a star-shaped cross section.
Abstract:
Gegenstand dieser Patentanmeldung ist ein Verfahren zum Aufbringen einer korrosions- und/oder verschleißhemmenden, metallischen Beschichtung (10) auf die Innenmantelfläche eines metallischen, rohrförmigen Körpers (1) mithilfe eines Bleches (10) aus dem korrosions- und/oder verschleißhemmenden, metallischen Werkstoff, wobei das Blech (10) durch Auftreffen mit einer hohen kinetischen Energie auf die Innenmantelfläche des rohrförmigen Körpers (1) mit dem rohrförmigen Körper (1) verbunden wird, wobei das Blech (10) gewölbt ausgebildet ist und mit der Innenmantelfläche des rohrförmigen Körpers (1) abschnittsweise umlaufend durch Magnetimpulsschweißen verbunden wird.
Abstract:
Verfahren zur Herstellung eines Mehrlagenrohres (5) mit Hilfe einer Einformstraße, bei dem einzelne zum Mehrlagenrohr (5) zu kombinierende Werkstofflagen (1, 2) vermittels Zuführmitteln (3), vorzugsweise vermittels Zuführrollen, als Band übernommen und aufeinandergelegt werden, und der so aus den aufeinanderliegenden Werkstofflagen (1, 2) gebildete Mehrlagen-Werkstoff durch eine Einformstation (4) oder Einformstationen (4, 4a, 4b, 4c) der Einformstraße dadurch zum Rohr (5) geformt wird, daß der den Rohrradius formende und durch ihre jeweiligen Rollen gebildete Innenraum der Einformstation (4) oder nacheinander angeordneten Einformstationen (4, 4a, 4b, 4c) in Richtung zum Rohrfertigende (10) hin den angestrebten Rohrendradius erreicht hat, bei dem die Breite B i des jeweilig als Innenrohr fungierenden Werkstofflagenbandes (1) so gewählt wird, daß B i > L nfa -π (SA + SI) ist, mit B i als der Breite der jeweilig als Innenrohr fungierenden Werkstofflagenbandes, L nfa der Breite der jeweilig als Außenrohr fungierenden Werkstofflagenbandes, SA der Wanddicke des Außenrohres, und SI als der Wanddicke des Innenrohres mm., sowie eine Einformstraße zur Herstellung eines Mehrlagenrohres, die der Durchführung des vorstehenden Verfahrens dient.
Abstract:
The porous material of the present invention is produced toy heating a dry powder mixture, containing mainly an organic solid hinder and inorgnnic particles and containing no foaming agent. The mixture is heated to melt the organic binder. The resulting solid structure comprising inorganic particles embedded in an organic binder is then heated to eliminate the organic binder, and finally healed again Io melallurgically bond the remaining inorganic tri-dimensional network into a rigid structure having interconnected pυrosiiy.
Abstract:
Le tube (1) est obtenu par repliement d'une bande métallique (2) d'épaisseur déterminée (e), sur elle-même, pour délimiter deux canaux 83a, 3b) séparés par une cloison (4) formant entretoise formée par les bordures repliées (5a, 5b) de la bande. Pour permettre d'accroître la résistance à la corrosion du tube, les rayons (R) de repliement des bordures parallèles (5a, 5b) sont déterminés égaux ou supérieures à l'épaisseur (e) de la bande (2) et les extrémités (9a, 9b) de la cloison (4) en contact avec la face interne (10) commune aux deux canaux (3a, 3b) sont arrondies suivant des rayons (R') sensiblement égaux à ceux des rayons (R) de repliement des bordures (5a, 5b). Application notamment aux échangeurs de chaleur de véhicules automobiles.
Abstract:
The method of forming a coated seamed metal tube (20c) of this invention is particularly, but not exclusively, adapted to existing continuous tube forming mills, wherein the tube (20c) is formed from a metal strip (20) and welded with the seam (71) located in an upper portion of the tube (20c). In the process of this invention, at least one surface of the strip (20) is coated with a metal coating (21) prior to forming and welding. The tube (20c) is then turned to relocate the welded seam (71) in a lower portion of the tube (20c) and the lower portion of the tube (20c) is then reheated to melt the metal coating (21) and the metal coating (21) then flows downwardly over and coating the welded seam (71). In the most preferred continuous or in line process of this invention, the tube (20c) is continuously spirally twisted following welding to locate the seam (71) in a lower portion of the tube (20c) adjacent a heater (110) and the tube (20c) is then heated by the heater (110) to the melting temperature of the metal coating (21), causing the coating (21) to coat the seam (71).
Abstract:
The tube to be produced consists of a wear-resistant internal tube (1) and a shock-resistant external tube. The internal tube (1) is prefabricated. The external tube is made from an initial pre-curved metal sheet (2), made by bending around the internal tube (1) and welded on the longitudinal adjacent edges (3). Shaping of the external tube around the internal tube (1) is effected by means of tools (4) which are pressed against the initial metal sheet (2). The parts of the tools are directly placed on the initial metal sheet (2) on at least three lines (5) distributed around the circumference and extending longitudinally over the length of the tube. Using the parts of the tools (4), the clamping force is applied to the initial metal sheet (2) perpendicularly or parallel to the gap between the edges (3) of said metal sheet (2) placed around the internal tube (1).
Abstract:
According to a known method for manufacturing such pipes which are used particularly as brake lines in motor vehicles, a steel strip provided with a copper coating is wound transversally and in a continuous manner so as to obtain an endless multilayer pipe which is then submitted to a heat treatment. According to this continuous heat treatment, the cold pipe is brought and kept at 1370 K. The copper coating melts and the different layers of the pipe are welded together. The quality of the pipe then obtained depends on several conditions which are difficult to satisfy; for example, this method requires a high mastery of the technic of production, perfectly adjusted machines and a steel strip with small thickness tolerances so as to avoid considerable manufacturing difficulties. In order to avoid too much production waste, the heat treatment of the multilayer pipe is carried out in two steps. Immediately after the formation of the pipe and combined with the first heating step, a final annealing temperature of 1200 K in order to eliminate the stress and to obtain the welding during the second heating step.