Abstract:
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steuerung/Regelung eines mittels eines Elektromotors angetriebenen Robotergelenks, wobei das Robotergelenk einen Stromsensor mit einer ersten Sensorelektronik zur Erfassung eines ersten,Betriebsstroms i k,1 (t) des Elektromotors, mit k = 1, 2,..., einen ersten Positionssensor zur Erfassung einer Antriebsposition θ m ( t ) eines Antriebsstrangs des Robotergelenks, einen zweiten Positionssensor zur Erfassung einer Abtriebsposition q(t) eines Abtriebsstrangs des Robotergelenks, und einen ersten Drehmomentsensor zur Erfassung eines Drehmoments τ J ,l ( t ) im Abtriebsstrang aufweist, wobei der Elektromotor auf Basis einer vorgegebenen Soll-Stellgröße z m (t) gesteuert/geregelt wird. Das vorgeschlagene Verfahren umfasst folgende Schritte: Bereitstellen * (101) der Messwerte θ m ( t ) ,i k, l ( t ), τ J ( t ), q ( t ),Prüfen (102) auf Vorliegen eines Fehlers durch den ersten Fehlerdetektor, der das Vorliegen eines Fehlers dann detektiert, wenn die Messwerte θ m ( t ), i k, l ( t ), τ J ( t ), q ( t ) und/oder deren Zeitableitungen vorgegebene erste Grenzwertbedingungen nicht erfüllen, und Prüfen (103) auf Vorliegen eines Fehlers durch weitere Fehlerdetektoren.
Abstract:
A computer-assisted medical device including a first joint set on an articulated arm, a second joint set on the articulated arm, and a control unit coupled to the first joint set and second joint set. The control unit determines a disturbance to the first joint set caused by a release of one or more brakes and compensates for the disturbance using the second joint set to reduce motion to a position of a point of interest on the articulated arm. In some embodiments, the control unit compensates for the disturbance by determining an initial position for the point of interest with respect to a reference point, determining a predicted motion for the point of interest based on the disturbance to the first joint set, and sending a drive command to the second joint set to move the point of interest in a direction opposite to the predicted motion.
Abstract:
Method for calibrating a robot mounted on active magnetic bearings and having a gripper, which is vertically positionable along the z axis and which is displaceable in a first magnetic bearing along the x axis and in a second magnetic bearing along the y axis, comprising : dividing the first and second magnetic bearings into in each case four mounting points (6a, 6b, 6c, 6d; 6e, 6f, 6g, 6h); defining the setpoint centre coordinates for the X, Y, Z axis and also the setpoint values for the angular positions delta, epsilon and transformation of the setpoint values into setpoint values for the vertical setpoint positions of the in each case four mounting points; specifying the actuating forces F1-F4 for the electromagnets of the in each case four mounting points; determining the current vertical positions in each case for the in each case four mounting points; measuring the current vertical position z of the in each case four mounting points and conversion into actual centre coordinates; comparing the actual centre coordinates with the setpoint centre coordinates, determining the deviation and repeating the preceding steps.
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren zur Korrektur eines Manipulator- Parameters, wobei ein Manipulator zumindest anhand des Manipulator-Parameters gesteuert wird. Dabei wird eine zeitliche Änderung des Manipulator-Parameters bestimmt und ein Restfehler in der Positioniergenauigkeit des Manipulators anhand der bestimmten zeitlichen Änderung des Manipulator-Parameters korrigiert.
Abstract:
Embodiments disclose a vibration-controlled robot apparatus. The apparatus includes a robot having an end effector operable to transport a substrate, a sensor coupled to the robot, the sensor operable to sense vibration as the robot transports the substrate, and operating the robot to reduce vibration of the end effector supporting the substrate. In some embodiments, a filter is provided in the motor drive circuit to filter one or more frequencies causing unwanted vibration of the end effector. Vibration control systems and methods of operating the same are provided, as are other aspects.
Abstract:
A method for directly determining model parameters for a machining process includes the steps of providing a system having a machining tool and a workpiece, and machining the workpiece using the machining tool, wherein the machining induces motions in the machining tool or the workpiece. The motions are men measured. System characteristic multipliers (eigenvalues) are estimated from the motions, The eigenvalues are then related to results of at least one an analytical method or theoretical model to obtain a set of process model parameters.
Abstract:
A method and a system for automatically adjusting a gravity vector of a robot (1). The robot (1) includes at least one axis (4), an actuator (5) arranged for driving the at least one axis (4), and a kinematic model of the robot (1). The method further includes obtaining at least one robot parameter indicating an actuator torque, or measuring at least one robot parameter indicating an inclination of the robot (1); and adjusting a gravity vector of a dynamic model of the robot (1) based on the at least one robot parameter.
Abstract:
A method and system for determining at least one property associated with a selected axis of a manipulator. The elasticity of the links and joints of a manipulator can be modeled and the resulting compliance can be determined. A certain method is used to control the manipulator such that certain quantities related to actuator torque and/or joint position can be determined for a certain kinematic configuration of the manipulator. Depending on the complexity of the manipulator and the number of properties that are of interest, the manipulator is controlled to a plurality of different kinematic configurations in which configurations the quantities are determined. Thereafter, a stiffness matrix for each component of the manipulator can be determined, and a global stiffness matrix for the total manipulator can be determined in order to determine at least one property of the selected axis.
Abstract:
The invention concerns a method, robot arrangement and computer program product for tuning a dynamical model of an industrial robot (10) on a foundation (26). The parameter determining device comprises a model memory with a first dynamical model of the robot, the first dynamical model comprising first model parameters representing dynamical properties of the robot; and a second dynamical model of a foundation (26) to which the robot is to be attached, the second dynamical model comprising second model parameters representing dynamical properties of the foundation, and a parameter adjusting unit (36) that obtains information about dynamical properties of the foundation by ordering the actuator (20) to move the robot (10) and by receiving, from the detector (22), measurements of at least one property affected by the movement; and set at least one of the second model parameters on the basis of the dynamical properties of the foundation.