Abstract:
Novel cleaning compositions, usable for removing a cured support material from a printed object obtained by additive manufacturing such as 3D inkjet printing are provided. The cleaning compositions are aqueous alkaline compositions containing a combination of two alkaline substances: an alkali metal hydroxide and an alkali metal silicate, each at a concentration of no more than 3 weight percents of the total weight of the composition. The cleaning compositions are characterized by high and constant dissolution rate, and are particularly useful for removing a cured support material that includes cross-linked polymeric chains such as cross-linked polyacrylate chains. Kits comprising the alkaline substances, and methods of fabricating a three-dimensional model object which utilize the cleaning compositions or the kits, and a three- dimensional model object fabricated thereby, are also provided.
Abstract:
Additive manufacturing apparatus for providing a three dimensional object, and method for additive manufacturing of a three dimensional object (5). An exposure unit (11) is arranged to cure a layer of slurry onto an object (5) being formed, and a substrate (2) is arranged to receive a predetermined amount of slurry (4) and to position the predetermined amount of slurry (4) to an exposure position associated with the exposure unit (11). The substrate (2) comprises a slurry repellant layer (3) on a surface of the substrate (2). An object holder is provided for holding the object (5) being formed, and the object holder is arranged to press the object (5) being formed towards the substrate (2) into the predetermined amount of slurry (4) until a desired thickness of the layer for a next additive manufacturing step is reached.
Abstract:
A medical device includes an outer polymeric tubular member and an inner tubular member. The outer polymeric tubular member includes one or more cuts formed therein to increase flexibility of the outer polymeric tubular member and includes an inner surface. The inner tubular member extends through the outer polymeric tubular member and has an outer surface in slidable contact with the inner surface of the outer polymeric tubular member. The outer polymeric tubular member is able to move relative to the inner tubular member as the medical device bends. In an example, the outer tubular member may be formed of a heat shrink material.
Abstract:
Le procédé comprend successivement une application d'une solution aqueuse contenant un liant dilué dans la solution,sur des fibres minérales ou végétales, une mise en forme des fibres en un matelas continu sur un con- voyeur en mouvement, et un chauffage du matelas en défilement dans une étuve par flux d'air chaud à une température supérieure à la température de durcissement du liant.En outre, est réalisé un séchage au moins partiel du matelas et préalable à l'entrée dans l'étuve. Ledit séchage au moins partiel inclut une irradiation du matelas en défilement au moyen d'ondes électromagnétiques radiofréquences dont la fréquence est située entre 3MHz et 300GHz.
Abstract:
A method for fabricating a rigid temporary support used for supporting inorganic substrates during processing includes providing an inorganic substrate comprising a first surface to be processed and a second surface opposite to the first surface. Next, applying a liquid layer to the second surface of the inorganic substrate and then curing the applied liquid layer and thereby forming a rigid temporary support attached to the second surface of the inorganic substrate. Next, processing the first surface of the inorganic substrate while supporting the inorganic substrate upon the rigid temporary support. The curing includes first exposing the applied liquid layer to ultraviolet (UV) radiation and then performing a post exposure bake (PEB) at a temperature sufficient to complete the curing of the applied liquid layer and to promote outgassing of substances.
Abstract:
A laser diode based system for direct injection of selected thermal-infrared (IR) wavelength radiation or energy into articles for a wide range of processing purposes is provided. These purposes may include heating, raising or maintaining the temperature of articles, or stimulating a target item in a wide range of different industrial, medical, consumer, or commercial applications. The system is especially applicable to operations that require or benefit from the ability to irradiate at specifically selected wavelengths or to pulse or inject the radiation. The system is particularly advantageous when functioning at higher speeds and in a non-contact environment with the target.
Abstract:
An imprint apparatus for imprinting a pattern provided to a mold onto a substrate or a member on the substrate includes a light source for irradiating a surface of the mold disposed opposite to the substrate and a surface of the substrate with light; an optical system for guiding the light from the light source to the surface of the mold and the surface of the substrate and guiding reflected lights from these surfaces to a spectroscope; a spectroscope for dispersing the reflected lights guided by the optical system into a spectrum; and an analyzer for analyzing a distance between the surface of the mold and the surface of the substrate. The analyzer calculates the distance between the surface of the mold and the surface of the substrate by measuring a distance between the surface of the mold and a surface formed at a position away from the surface of the mold.