Abstract:
A method for Micro Electro Mechanical Etching (MEMS) etching comprising: providing a reactor 100 positioning a MEMS substrate 302 within said reactor, and release etching said substrate with a gas phase mixture 312 of a halide-containing compound and an-OH containing solvent to produce a MEMS device. The gas also includes an inert carrier gas and is at reduced pressure, preferably about 26.66 • 10 3 N/m 2 (200 Torr). The gas is heated to between 50°C and 75°C. The process conditions in said reactor are controlled such that the etch rate is surface-reaction limited. A plurality of substrates 302, 304, 306 are positioned within said reactor with their substrate planes parallel and the reactive gas is flowed in a direction parallel to the substrate planes.
Abstract translation:一种用于微机电蚀刻(MEMS)蚀刻的方法,包括:提供反应器100,其将MEMS基板302定位在所述反应器内,并用含卤化合物和含-OH的溶剂的气相混合物312释放所述基板, 生产MEMS器件。 气体还包括惰性载气,并且在减压下,优选约26.66。 10 3 N / m 2(200乇)。 将气体加热至50℃至75℃。控制所述反应器中的工艺条件使得蚀刻速率受表面反应限制。 多个基板302,304,306设置在所述反应器内,其基板平面平行,反应气体沿平行于基板平面的方向流动。
Abstract:
The present invention relates to a method for releasing a MEMS device which provides a complete dry release method to prevent stiction or adhesion problem during the MEMS device release process. Adopting an all-dry processing avoids the need to perform rinsing and drying process steps during fabrication. The release process is divided into two parts i.e. the backside release (200) and the front side release process (300).
Abstract:
The disclosed fabrication methodology addresses the problem of creating low-cost micro-electro-mechanical devices and systems, and, in particular, addresses the problem of delicate microstructures being damaged by the surface tension created as a wet etchant evaporates. This disclosure demonstrates a method for employing a dry plasma etch process to release encapsulated microelectromechanical components.
Abstract:
A process for fabricating a suspended microelectromechanical system (MEMS) structure comprising epitaxial semiconductor functional layers that are partially or completely suspended over a substrate. A sacrificial release layer and a functional device layer are formed on a substrate. The functional device layer is etched to form windows in the functional device layer defining an outline of a suspended MEMS device to be formed from the functional device layer. The sacrificial release layer is then etched with a selective release etchant to remove the sacrificial release layer underneath the functional layer in the area defined by the windows to form the suspended MEMS structure.
Abstract:
A packaged microelectromechanical system (18) may be formed in a hermetic cavity (22) by forming the system (18) on a semiconductor structure (12) and covering the system with a thermally decomposing film (25). That film (25) may then be covered by a sealing cover (20). Subsequently, the thermally decomposing material (25) may be decomposed, forming a cavity (22), which can then be sealed to hermetically enclose the system (18).
Abstract:
The disclosed fabrication methodology addresses the problem of creating low-cost micro-electro-mechanical devices and systems, and, in particular, addresses the problem of delicate microstructures being damaged by the surface tension created as a wet etchant evaporates. This disclosure demonstrates a method for employing a dry plasma etch process to release encapsulated microelectromechanical components.
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung wenigstens einer Kavität in einer mikroelektronischen und/oder mikromechanischen Struktur unter Verwendung wenigstens einer Opferschicht sowie einen hiermit hergestellten Sensor oder Aktor. Es ist die Aufgabe der vorliegenden Erfindung, ein solches Verfahren beziehungsweise einen solchen Sensor oder Aktor zur Verfügung zu stellen, wobei die Opferschicht einen ausreichenden Abstand zwischen den Strukturelementen während der Präparation der mikroelektronischen und/oder mikromechanischen Struktur zur Verfügung stellt, die Opferschicht leicht zu entfernen ist und darüber hinaus auf möglichst einfache Weise ein Anhaften der Strukturelemente nach Entfernen der Opferschicht vermieden werden kann, wobei die Verfahrensschritte bei möglichst niedrigen Temperaturen ausführbar sein sollen, um beispielsweise polymere Funktionsschichten zur Ausbildung eines Sensors oder Aktors einsetzen zu können. Die Aufgabe wird einerseits durch ein gattungsgemäßes Verfahren und andererseits durch einen Sensor oder Aktor der oben genannten Gattung gelöst, wobei die Opferschicht aus wenigstens einem unterhalb seiner Schmelztemperatur mit einer Sublimationsrate von wenigstens 1nm/h sublimierenden Feststoff ausgebildet wird, und wobei der sublimierende Feststoff eine Schmelztemperatur in einem Bereich von 18°C bis 200°C aufweist.
Abstract:
This invention comprises a process for fabricating a MEMS microstructure in a sealed cavity wherein the etchant entry holes are created as a by-product of the fabrication process without an additional step to etch holes in the cap layer (20). The process involves extending the layers of sacrificial material (12, 16) past the horizontal boundaries of the cap layer (20). The cap layer (20) is supported by pillars (21) formed by a deposition in holes etched through the sacrificial layers (12,16), and the etchant entry holes are formed when the excess sacrificial material (12, 16) is etched away, leaving voids between the pillars (21) supporting the cap.
Abstract:
This invention comprises a process for fabricating a MEMS microstructure in a sealed cavity wherein the etchant entry holes are created as a by-product of the fabrication process without an additional step to etch holes in the cap layer (20). The process involves extending the layers of sacrificial material (12, 16) past the horizontal boundaries of the cap layer (20). The cap layer (20) is supported by pillars (21) formed by a deposition in holes etched through the sacrificial layers (12,16), and the etchant entry holes are formed when the excess sacrificial material (12, 16) is etched away, leaving voids between the pillars (21) supporting the cap.
Abstract:
This invention comprises a process for fabricating a MEMS microstructure in a sealed cavity wherein the etchant entry holes are created as a by-product of the fabrication process without an additional step to etch holes in the cap layer. The process involves extending the layers of sacrificial material past the horizontal boundaries of the cap layer. The cap layer is supported by pillars formed by a deposition in holes etched through the sacrificial layers, and the etchant entry holes are formed when the excess sacrificial material is etched away, leaving voids between the pillars supporting the cap.