Abstract:
This invention relates to an industrial process of manufacturing hydroxide precursor for lithium transition metal oxide used in secondary lithium ion batteries. More particularly, this process utilizes highly concentrated nitrate salts and is designed to mitigate waste production.
Abstract:
The present invention relates to a lithium metal oxide represented by formula (I) as follows: Li 1+x Mn y M 1-x-y O 2 (I) wherein: 0 ≤ x ≤ 0.33 and 0 ≤ y ≤ 1, and M is one or more metal selected from the group consisting of Al, Ni, Co, Cr, Ca, Zr, Nb, Mo, Sr, Sb, V, Ti and Fe, wherein the lithium metal oxide is surface modified with carbonaceous compounds; and to a method for preparing the lithium metal oxide.
Abstract:
The present invention relates to a method for producing a positive electrode material comprising at least one Na-based solid crystalline phase selected in the group consisting of Na-based crystalline P'2-phases, Na-based solid crystalline phases of formula Na (3+X) V 2 (PO 4 ) 3 with 0 (3+y) V 2 (PO 4 ) 2 F 3 with 0 3 P as starting material.
Abstract:
Verfahren zur Herstellung eines pulverförmigen Mischoxides A der allgemeinen Formel Li 1+x (Ni a Co b Mn c )B d O 2 mit 0 2 /g und einer Stampfdichte von 250 bis 700 g/l, bei dem man a) eine Lösung bereitstellt, die oxidierbare und/oder hydrolysierbare Metallverbindungen von Lithium, Mangan und/oder Nickel und Borsäure jeweils mit Anteilen entsprechend der allgemeinen Formel enthält, b) die Lösung mittels eines Zerstäubergases zu einem Aerosol zerstäubt, c) das Aerosol in einem Reaktionsraum mit einer Flamme zur Reaktion bringt, wobei die Flamme aus einem Gemisch eines Brenngases und Luft erhalten wird und bei der die Gesamtmenge an Sauerstoff mindestens zur vollständigen Umsetzung des Brenngases und der Metallverbindungen ausreicht, d) den Reaktionsstrom kühlt und anschließend den Feststoff aus dem Reaktionsstrom abtrennt. Verfahren zur Herstellung eines pulverförmigen Mischoxides B der allgemeinen Formel Li 1+x (Ni a Co b Mn c )B d O 2 mit 0 2 /g und einer Stampfdichte von 1000 bis 2500 g/l, bei dem man das pulverförmige Mischoxid A bei Temperaturen von 700 bis 1100°C über einen Zeitraum von 2 bis 36 Stunden thermisch behandelt.
Abstract:
Materials are presented of the formula: A x M y M i zi O 2-d , where A is sodium or a mixed alkali metal including sodium as a major constituent; x > 0; M is a metal or germanium; y > 0; M i , for i = 1, 2, 3...n, is a transition metal or an alkali metal; z i >= 0 for each i = 1, 2, 3...n; 0 i and d are such as to maintain charge neutrality; and the values of x, y, z i and d are such that x + y + Summation z i > 2-d. Also presented is a method of preparing a compound having the formula A x M y M i zi O 2-d .
Abstract translation:材料呈现下式:Ax My Mi zi O2-d,其中A为钠或混合碱金属,包括以钠为主要成分; x> 0; M是金属或锗; y> 0; Mi,i = 1,2,3 ... n是过渡金属或碱金属; zi> = 0,对于每个i = 1,2,3 ... n; 0 2-d。 还提出了制备具有式I i My Mi zi O 2-d的化合物的方法。
Abstract:
Process for manufacturing a lithiated transition metal oxide, said process comprising the steps of (a) mixing at least one lithium salt and a precursor selected from transition metal oxides, transition metal oxyhydroxides, transition metal hydroxides, and transition metal carbonates, (b) pre-calcining the mixture obtained in step (a) at a temperature in the range of from 300 to 700°C, and (c) calcining the pre-calcined mixture according to step (b) in a multi-stage fluidized bed reactor at a temperature in the range of from 550°C to 950°C, wherein the temperatures in step (b) and (c) are selected in a way that step (c) is being performed at a temperature higher than that of step (b).
Abstract:
The present invention discloses a method for preparing lithium-rich manganese-based cathode material. The method comprises: dispersing α-MnO 2 micron particles, a nickel salt and a lithium-containing compound in a solvent to obtain a mixture, then evaporating the mixture to remove the solvent, and calcining the solid product obtained from the evaporation; wherein the lithium-containing compound is a lithium salt and/or lithium hydroxide. The present invention also provides a lithium-rich manganese-based cathode material prepared by the above method. The present invention also provides a lithium-ion battery of which anode material contains the foregoing lithium-rich manganese-based anode material. The lithium-rich manganese-based cathode material provided by the present invention has high rate capability and prolonged cycle stability.