Abstract:
The present invention relates to conjugates of carboxy gem-bisphosphonic acids with alkylating agents. Such derivatives are endowed with remarkable antitumor activity and with specific activity on bone resorption. The present invention also relates to a process for preparing them and to pharmaceutical compositions containing them.
Abstract:
There is disclosed a lubricant additive ingredient that imparts extreme pressure anti-wear properties to lubricant additive compositions. Specifically, there is disclosed a derivative of a vegetable oil triglyceride, a wax ester or a telomerized oil reacted with phosphorous pentasulfide to produce a phosphorous-sulfur (PS) extreme pressure additive.
Abstract:
The invention provides, inter alia, novel bisphosphonate compounds and methods of making and using. In embodiments, the invention provides compounds and methods in connection with research and therapeutic applications, e.g., for tumor cell growth inhibition, activation of gammadelta T cells, inhibition of farnesyldiphosphate (FPPS) and/or undecaprenyldiphosphate synthase enzymes, bone resorption diseases, cancer, immune disorders, immunotherapy, and infectious diseases. In regards to certain embodiments, a surprising advance has been the recognition that certain structural features can significantly enhance the activity of the compounds. For example, the presence of particular cationic species e.g., phosphonium, sulfonium, and arsonium moieties can contribute to desirable functional activity when positioned near a bisphosphonate moiety. In other embodiments of non-nitrogen containing bisphosphonates, terphenyl and benzyl bisphosphonate compounds and methods are provided. Further variations are also provided.
Abstract:
The invention provides, inter alia, novel bisphosphonate compounds and methods of making and using. In embodiments, the invention provides compounds and methods in connection with research and therapeutic applications, e.g., for tumor cell growth inhibition, activation of gammadelta T cells, inhibition of farnesyldiphosphate (FPPS) and/or undecaprenyldiphosphate synthase enzymes, bone resorption diseases, cancer, immune disorders, immunotherapy, and infectious diseases. In regards to certain embodiments, a surprising advance has been the recognition that certain structural features can significantly enhance the activity of the compounds. For example, the presence of particular cationic species e.g., phosphonium, sulfonium, and arsonium moieties can contribute to desirable functional activity when positioned near a bisphosphonate moiety. In other embodiments of non-nitrogen containing bisphosphonates, terphenyl and benzyl bisphosphonate compounds and methods are provided. Further variations are also provided.
Abstract:
Endosseous implant to be applied to a human or animal bone, wherein the surface of the implant is made from titanium or a titanium alloy, said implant having a smooth or rough surface texture, which is characterized in that said surface has been treated with at least one selected organic phosphonate compound or a pharmaceutically acceptable salt or ester or an amide thereof; process for producing said implants.
Abstract:
Endosseous implant to be applied to a human or animal bone, said implant having a surface made from a selected metal or a selected metal alloy or a ceramic, whereby said metal resp. metal alloy is selected from chromium, niobium, tantalum, vanadium, zirconium, aluminium, cobalt, nickel, stainless steels or an alloy thereof, said surface having a smooth or rough texture, characterized in that said surface has been treated with at least one pharmaceutically acceptable organic compound carrying at least one phosphonic acid group or a derivative thereof preferably a pharmaceutically acceptable salt or ester or amid thereof and method for producing said implant.
Abstract:
Endosseous implant to be applied to a human or animal bone, said implant having a smooth or rough surface texture and wherein said surface has been treated with at least one organic compound carrying at least one phosphonic acid group or a salt thereof and method for producing said implant.
Abstract:
The present invention relates to conjugates of 3-carboxy-4,4'-dihydroxyphosphorylbutenoic acids with alkylating agents. Such derivatives are endowed with marked antitumor activity, especially against multiple myeloma. The present invention relates as well to a process for the preparation thereof and to pharmaceutical compositions containing them.