Abstract:
A catalyst system including the reaction product of a fluorided support, an activator, and at least a first transition metal catalyst compound; methods of making such catalyst systems, polymerization processes using such catalyst systems, and polymers made therefrom.
Abstract:
A process for producing an ethylene polymer or copolymer which contains less than 5 ppm titanium and has a bulk density, in granular form, of at least 22.5 lbs/ft3, using a spheroidal Ziegler-Natta type olefin polymerization catalyst having a particle size distribution characterized by a Dm*/Dn of less than 3.0 and comprising a titanium compound, an aluminum compound, and a spheroidal magnesium chloride support.
Abstract:
This invention relates to new multimodal and/or broad molecular weight high density polyethylene polymers. The polymers may be made in a single reactor, preferably a gas phase reactor using a dual catalyst system comprising a pyridyldiamido transition metal compound, a metallocene compound, a support, and optionally an activator.
Abstract:
This invention relates to a supported catalyst system and process for use thereof. In particular, the catalyst system includes a pyridyldiamido transition metal complex, an activator and a support material. The catalyst system may be used for preparing ultrahigh molecular weight polyolefins.
Abstract:
This invention relates to a catalyst system including fluorided silica, alkylalumoxane activator and a bridged monocyclopentadienyl group 4 transition metal compound, where the fluorided support has not been calcined at a temperature of 400°C or more, and is preferably, produced using a wet mix method, particularly an aqueous method.
Abstract:
A polymerization catalyst system, a method of using the polymerization catalyst system, and a polymer produced with the catalyst system. The polymerization catalyst system has a non-metallocene catalyst and a metallocene catalyst. The metallocene catalyst has the formula: wherein R 1 and R 2 are each independently, phenyl, methyl, chloro, fluoro, or a hydrocarbyl group.
Abstract:
The invention relates to a pipe comprising polyethylene or a polyethylene composition comprising polyethylene and carbon black, wherein the polyethylene is produced in the presence of a solid catalyst component and a co-catalyst, wherein the solid catalyst component is prepared by a process comprising the steps of: (a) contacting a dehydrated support having hydroxyl groups with a magnesium compound having the general formula MgR 1 R 2 , wherein R 1 and R 2 are the same or different and are independently selected from the group comprising an alkyl group, alkenyl group, alkadienyl group, aryl group, alkaryl group, alkenylaryl group and alkadienylaryl group; (b) contacting the product obtained in step (a) with modifying compounds (A), (B) and (C), wherein: (A) is at least one compound selected from the group consisting of carboxylic acid, carboxylic acid ester, ketone, acyl halide, aldehyde and alcohol; (B) is a compound having the general formula R 11 f(R 12 O) g SiX h , wherein f, g and h are each integers from 0 to 4 and the sum of f, g and h is equal to 4 with a proviso that when h is equal to 4 then modifying compound (A) is not an alcohol, Si is a silicon atom, O is an oxygen atom, X is a halide atom and R 11 and R 12 are the same or different and are independently selected from the group comprising an alkyl group, alkenyl group, alkadienyl group, aryl group, alkaryl group, alkenylaryl group and alkadienylaryl group; (C) is a compound having the general formula (R 13 O) 4 M, wherein M is a titanium atom, a zirconium atom or a vanadium atom, O is an oxygen atom and R 13 is selected from the group comprising an alkyl group, alkenyl group, alkadienyl group, aryl group, alkaryl group, alkenylaryl group and alkadienylaryl group; and (c) contacting the product obtained in step (b) with a titanium halide compound having the general formula TiX 4 , wherein Ti is a titanium atom and X is a halide atom, whereby the polyethylene has a molecular weight Mz+1 of at least 720,000 g/mol and less than 2,500,000 g/mol.
Abstract:
Ethylene copolymers made in the gas phase using a phosphinimine based single site catalyst supported on a passivated inorganic oxide support. The ethylene copolymers have a relatively narrow molecular weight distribution and good rheological parameters.
Abstract:
The invention provides a composition comprising a first composition, comprising at least one ethylene-based polymer, and wherein the first composition comprises a MWCDI value greater than 0.9, and a melt index ratio I10/I2 that meets the following equation: I10/I2 ≥ 7.0 - 1.2 x log (I2). The invention also provides a process to form a composition comprising at least two ethylene-based polymers, said process comprising the following: polymerizing ethylene, and optionally at least one comonomer, in solution, in the presence of a catalyst system comprising a metal-ligand complex of Structure I, as described herein, to form a first ethylene-based polymer; and polymerizing ethylene, and optionally at least one comonomer, in the presence of a catalyst system comprising a Ziegler/Natta catalyst, to form a second ethylene-based polymer.
Abstract:
La presente invención se refiere a filamentos de césped artificial formados a partir de polietileno, que tienen propiedades deseables. En un aspecto, el filamento de césped artificial comprende una composición que contiene una primera composición, en donde la primera composición comprende al menos un polímero basado en etileno y en donde la primera composición comprende un valor de IDCPMP mayor de 0.9, y una relación de índice de fluidez (I10/I2) que cumple con la siguiente ecuación: I10/I2 ≥ 7.0 - 1.2 x log (I2).