Abstract:
The present invention relates to a method for obtaining at least one particle (1) comprising the following steps: (a) preparing a solution A comprising at least one precursor of at least one element selected from the group constituted by silicon, boron, phosphorus, germanium, arsenic, aluminium, iron, titanium, zirconium, nickel, zinc, calcium, sodium, barium, potassium, magnesium, lead, silver, vanadium, tellurium, manganese, iridium, scandium, niobium, tin, cerium, beryllium, tantalum, sulfur, selenium, nitrogen, fluorine, chlorine; (b) preparing an aqueous solution B; (c) forming droplets of solution A by a first means for forming droplets; (d) forming droplets of solution B by a second means for forming droplets; (e) mixing said droplets; (f) dispersing the mixed droplets in a gas flow; (g) heating said dispersed droplets at a temperature sufficient to obtain the at least one particle (1); (h) cooling of said at least one particle (1); and (i) separating and collecting said at least one particle (1); wherein the aqueous solution may be acidic, neutral, or basic; and wherein at least one colloidal suspension comprising a plurality of nanoparticles 3 is mixed with the solution A at step (a) and/or with the solution B at step (b). The present invention also relates to a device for implementing the method.
Abstract:
The present disclosure is drawn to coalescent inks and material sets, such as for 3D printing. In one example, the coalescent ink can include a conjugated polymer, a colorant imparting a visible color to the coalescent ink, and an ink vehicle comprising a high boiling point co-solvent having a boiling point of 250 °C or greater. The high boiling point co-solvent can be present in an amount from about 1 wt% to about 4 wt% with respect to the coalescent ink.
Abstract:
Described herein are non-aqueous ink compositions containing a polythiophene having a repeating unit complying with formula (I) described herein, a transition metal complex having at least one β-diketonate ligand, and a liquid carrier having one or more organic solvents. The present disclosure also concerns the uses of such non-aqueous ink compositions, for example, in organic electronic devices.
Abstract:
An ink application method is provided. In the method, an ink is discharged to an object by an inkjet method, to apply the ink to the object. The object includes a base material and a gel layer overlying the base material, and the gel layer includes a vinyl chloride resin and a plasticizer. The ink is an oil-based ink. When a free induction decay curve of the object obtained by a pulse NMR method is separated into two curves respectively derived from a hard component and a soft component, the curve derived from the hard component accounts for 35% to 40% of the free induction decay curve, and the curve derived from the soft component has a spin-spin relaxation time of from 30.0 to 45.0 ms when obtained by a Hahn echo method.