摘要:
The present invention provides improved and/or shortened processes and methods for reprogramming TILs in order to prepare therapeutic populations of TILs with increased therapeutic efficacy. Such reprogrammed TILs find use in therapeutic treatment regimens.
摘要:
An improved method of treating cancers CD19 CAR T cells by administering the CD19 CAR T cells to the central nervous system, e.g., by intracerebroventricular administration, is described.
摘要:
Embodiments are described that relate to methods and systems for growing cells in a hollow fiber bioreactor. In embodiments, the cells may be exposed to an activator for activating expansion of the cells. The cells may in embodiments include T cells, and the activator may be in different forms, including, for example, antigen presenting cells or beads functionalized with antibodies.
摘要:
The present invention relates to the identification of a new cell population of human lymphoid precursors characterized by the expression of markers such as CD34, DNAM- 1 (CD226) and CXCR4, the relative method for their identification and the relative uses in the therapeutic and diagnostic field.
摘要:
Safe, rapid and efficient methods for producing virus-specific or other antigen- specific T-cells from cord blood and other samples containing naive immune cells.
摘要:
The invention provides methods of making immune effector cells (e.g., T cells, NK cells) that can be engineered to express a chimeric antigen receptor (CAR), and compositions and reaction mixtures comprising the same.
摘要:
Provided herein are methods of producing natural killer (NK) cells and NK progenitor cell populations using a two-step expansion and differentiation method. Also provided herein are methods of producing populations of NK cells and NK progenitor cell populations using a three-step expansion and differentiation method. Also provided herein are methods of suppressing tumor cell proliferation using the NK cells, the NK cell populations, and the NK progenitor cell populations produced by the methods described herein, as well as methods of treating individuals having cancer or a viral infection, comprising administering the NK cells, the NK cell populations, and the NK progenitor cell populations produced by the methods described herein to an individual having the cancer or viral infection.
摘要:
The present invention relates to the ex vivo differentiation of NK cells from CD34 + hematopoietic stem cells. Such NK cells and their progenitor cells can be used in therapies of a broad range of malignancies. In the present invention it is shown that IL-12 modulates ex vivo NK cell differentiation. Specific, we achieved significantly higher expression of KIR, CD16 and CD62L in the presence of IL-12 in the cell culture system. The induction of receptor expression by IL-12 occurred predominantly on an augmented population of CD33+NKG2A+ NK cells early during NK cell differentiation. These cells further show enhanced cytolytic activity against MHC class I positive AML targets. In line with the enhanced CD16 expression, IL-12 modulated ex vivo generated NK cells exhibit an improved antibody-dependent-cytotoxicity, using anti CD20 antibody on various B cell targets. Additional to the enhanced expression of CD62L, we show that this cell population consists of a specific chemokine receptor profile. By showing an increased capacity for adhesion to lymphendothelial cells and a specific chemokine receptor profile, we show that IL-12 provided the ex vivo generated NK cells with specific tissue-homing abilities.
摘要:
The present invention regards methods and/or compositions related to Natural Killer T cells that are engineered to harbor an expression construct that encodes IL-2, IL-4, IL-7, and/or IL-15 and additionally or alternatively comprise a chimeric antigen receptor (CAR). In specific embodiments, the CAR is a CAR that targets the GD2 antigen, for example in neuroblastoma.