Abstract:
Provided herein are chimeric influenza hemagglutinin (HA) polypeptides, compositions comprising the same, vaccines comprising the same, and methods of their use.
Abstract:
Described herein is the development of a computationally optimized influenza HA protein that elicits broadly reactive immune response to all H5N1 influenza virus isolates. The optimized HA protein was developed through a series of HA protein alignments, and subsequent generation of consensus sequences, for clade 2 H5N1 influenza virus isolates. The final consensus HA amino acid sequence was reverse translated and optimized for expression in mammalian cells. It is disclosed herein that influenza virus-like particles containing the optimized HA protein are an effective vaccine against H5N1 influenza virus infection in animals.
Abstract:
Polyvalent influenza virus-like particles (VLPs) comprising influenza antigenic polypeptides are described. Also described are compositions comprising these polyvalent VLPs as well as methods of making and using these VLPs.
Abstract:
Polyvalent influenza virus-like particles (VLPs) comprising influenza antigenic polypeptides are described. Also described are compositions comprising these polyvalent VLPs as well as methods of making and using these VLPs.
Abstract:
Provided herein are membrane enveloped virus-like particles (VLPs), and methods of use and synthesis thereof. In particular, yeast-cell-derived VLPs are provided that comprise surface-displayed glycoproteins and/or multiple virally-derived proteins.
Abstract:
This disclosure provides compositions that include a mixture of viral like particles (VLPs), expressing different individual influenza hemagglutinin (HA) proteins that elicit broadly reactive immune responses to a wide variety of influenza viruses. For example, the composition can include at least two different influenza VLPs, a first VLP comprising a first HA polypeptide and a second VLP comprising a second influenza HA polypeptide, wherein the first and the second HA polypeptide are different subtypes and/or are from different influenza viruses, and a pharmaceutically acceptable carrier and/or an adjuvant. Methods of using the disclosed polymeric influenza VLP compositions to stimulate an immune response against influenza viruses, for example as a pre-pandemic or a seasonal vaccine, are provided.
Abstract:
A method for synthesizing chimeric influenza virus-like particles (VLPs) within a plant or a portion of a plant is provided. The method involves expression of chimeric influenza HA in a plant or a portion of a plant. The invention is also directed towards a VLP comprising chimeric influenza HA protein and plants lipids. The invention is also directed to a nucleic acid encoding chimeric influenza HA as well as vectors. The VLPs may be used to formulate influenza vaccines, or may be used to enrich existing vaccines.
Abstract:
The present invention discloses novel chimeric Varicella Zoster Virus (VZV) virus-like particles (VLPs) comprising chimeric VZV glycoproteins. The invention also discloses vaccine formulations of the chimeric VZV-VLPs and methods of inducing an immune response in subjects.
Abstract:
The present invention relates to vaccine compositions comprising at least three variants of a subtype of an influenza A and/or B virus antigen, wherein the at least three variants are selected on the basis of differences between their amino acid sequences. The present invention further relates to said vaccine compositions for use in a method of generating an immune response against influenza viruses. Further provided is a method for producing said vaccine compositions.
Abstract:
A method is described that combines the use of two or more distinct VLPs to produce a replication - competent fully infectious influenza virus.