摘要:
Provided herein are methods, compositions, and non-naturally occurring microbial organism for preparing compounds such as1-butanol, butyric acid, succinic acid, 1,4-butanediol, 1-pentanol, pentanoic acid, glutaric acid, 1,5-pentanediol, 1-hexanol, hexanoic acid, adipic acid, 1,6-hexanediol, 6-hydroxy hexanoic acid, ε-Caprolactone, 6-amino-hexanoic acid, ε-Caprolactam, hexamethylenediamine, linear fatty acids and linear fatty alcohols that are between 7-25 carbons long, linear alkanes and linear -alkenes that are between 6-24 carbons long, sebacic acid and dodecanedioic acid comprising: a) converting a CN aldehyde and pyruvate to a CN+3 -hydroxyketone intermediate through an aldol addition; and b) converting the CN+3 -hydroxyketone intermediate to the compounds through enzymatic steps, or a combination of enzymatic and chemical steps.
摘要:
The present invention provides microorganisms capable of converting acetyl-coA into crotyl alcohol as well as fermentation methods for producing crotyl alcohol, either alone, or in combination with acetone and/or isopropanol. The microorganisms may be genetically engineered to express and/or disrupt one or more of the following enzymes: acetaldehyde dehydrogenase, alcohol dehydrogenase, bifunctional acetaldehyde/alcohol dehydrogenase, aldehyde oxidoreductase, phosphotransacetylase, acetate kinase, CoA-transferase A, CoA-transferase B, acetoacetate decarboxylase, secondary alcohol dehydrogenase, butyryl-CoA dehydrogenase (BCD), and/or trans-2-enoyl-CoA reductase (TER).
摘要:
The invention relates to the fields of bacterial metabolism and the utilization or consumption of short-chain carboxylic acids to reduced products. Specifically, it relates to syngas fermentations using monocultures of syngas-utilizing homoacetogenic bacteria for the production of alcohols using native alcohol dehydrogenase.
摘要:
The invention relates to a genetically engineered bacterium comprising an energy-generating fermentation pathway and methods related thereto. In particular, the invention provides a bacterium comprising a phosphate butyryltransferase (Ptb) and a butyrate kinase (Buk) (Ptb-Buk) that act on non-native substrates to produce a wide variety of products and intermediates. In certain embodiments, the invention relates to the introduction of Ptb-Buk into a C1-fixing microoorgansim capable of producing products from a gaseous substrate.
摘要:
The invention relates to the fields of bacterial metabolism and the utilization or consumption of short-chain carboxylic acids to reduced products. Specifically, it relates to syngas fermentations using monocultures of syngas-utilizing homoacetogenic bacteria for the production of alcohols using native alcohol dehydrogenase.
摘要:
Provided herein are methods, compositions, and non-naturally occurring microbial organism for preparing compounds such as1-butanol, butyric acid, succinic acid, 1,4-butanediol, 1-pentanol, pentanoic acid, glutaric acid, 1,5-pentanediol, 1-hexanol, hexanoic acid, adipic acid, 1,6-hexanediol, 6-hydroxy hexanoic acid, ε-Caprolactone, 6-amino-hexanoic acid, ε-Caprolactam, hexamethylenediamine, linear fatty acids and linear fatty alcohols that are between 7-25 carbons long, linear alkanes and linear -alkenes that are between 6-24 carbons long, sebacic acid and dodecanedioic acid comprising: a) converting a C N aldehyde and pyruvate to a C N+3 -hydroxyketone intermediate through an aldol addition; and b) converting the C N+3 -hydroxyketone intermediate to the compounds through enzymatic steps, or a combination of enzymatic and chemical steps.
摘要:
A method is described for producing an objective substance, for example, an aldehyde such as vanillin. The objective substance is produced from a carbon source or a precursor of the objective substance by using a microorganism having an ability to produce the objective substance, wherein the microorganism has been modified to have a specific carboxylic acid reductase (CAR) gene, such as a Gordonia CAR gene, Novosphingobium CAR gene, or Coccomyxa CAR gene.
摘要:
The present invention provides microorganisms capable of converting acetyl-coA into crotyl alcohol as well as fermentation methods for producing crotyl alcohol, either alone, or in combination with acetone and/or isopropanol. The microorganisms may be genetically engineered to express and/or disrupt one or more of the following enzymes: acetaldehyde dehydrogenase, alcohol dehydrogenase, bifunctional acetaldehyde/alcohol dehydrogenase, aldehyde oxidoreductase, phosphotransacetylase, acetate kinase, CoA-transferase A, CoA-transferase B, acetoacetate decarboxylase, secondary alcohol dehydrogenase, butyryl-CoA dehydrogenase (BCD), and/or trans-2-enoyl-CoA reductase (TER).
摘要:
The invention provides methods of increasing the production of fermentation products by increasing flux through a fermentation pathway by optimising enzymatic reactions. In particular, the invention relates to identifying enzymes and/or co-factors involved in metabolic bottlenecks in fermentation pathways, and fermenting a CO-comprising substrate with a recombinant carboxydotrophic Clostridia microorganism adapted to exhibit increased activity of the one or more of said enzymes, or increased availability of the one or more of said co-factors, when compared to a parental microorganism.
摘要:
The present disclosure identifies methods and compositions for modifying photoautotrophic organisms as hosts, such that the organisms efficiently convert carbon dioxide and light into pyruvate or acetyl-CoA, and in particular the use of such organisms for the commercial production of molecules derived from these precursors, e.g., ethanol.