摘要:
Provided herein are methods, compositions, and non-naturally occurring microbial organism for preparing compounds such as1-butanol, butyric acid, succinic acid, 1,4-butanediol, 1-pentanol, pentanoic acid, glutaric acid, 1,5-pentanediol, 1-hexanol, hexanoic acid, adipic acid, 1,6-hexanediol, 6-hydroxy hexanoic acid, ε-Caprolactone, 6-amino-hexanoic acid, ε-Caprolactam, hexamethylenediamine, linear fatty acids and linear fatty alcohols that are between 7-25 carbons long, linear alkanes and linear -alkenes that are between 6-24 carbons long, sebacic acid and dodecanedioic acid comprising: a) converting a C N aldehyde and pyruvate to a C N+3 -hydroxyketone intermediate through an aldol addition; and b) converting the C N+3 -hydroxyketone intermediate to the compounds through enzymatic steps, or a combination of enzymatic and chemical steps.
摘要:
The present invention relates to a method for producing chiral β-nitro alcohol compounds. The invention relates in particular to an (R)-selective cupin- nitroaldolase, which enantioselectively can catalyze the Henry reaction, wherein an aldehyde or ketone compound is converted to the corresponding β-nitro alcohol compound in the presence of a nitroalkane compound and a cupin-nitroaldolase.
摘要:
Provided herein are methods, compositions, and non-naturally occurring microbial organism for preparing compounds such as1-butanol, butyric acid, succinic acid, 1,4-butanediol, 1-pentanol, pentanoic acid, glutaric acid, 1,5-pentanediol, 1-hexanol, hexanoic acid, adipic acid, 1,6-hexanediol, 6-hydroxy hexanoic acid, ε-Caprolactone, 6-amino-hexanoic acid, ε-Caprolactam, hexamethylenediamine, linear fatty acids and linear fatty alcohols that are between 7-25 carbons long, linear alkanes and linear -alkenes that are between 6-24 carbons long, sebacic acid and dodecanedioic acid comprising: a) converting a CN aldehyde and pyruvate to a CN+3 -hydroxyketone intermediate through an aldol addition; and b) converting the CN+3 -hydroxyketone intermediate to the compounds through enzymatic steps, or a combination of enzymatic and chemical steps.
摘要:
The present disclosure relates to engineered microorganisms that produce amino acids and amino acid intermediates. In particular, the disclosure relates to recombinant nucleic acids encoding operons that increase production of aromatic amino acids and the aromatic amino acid intermediate shikimate; microorganisms with increased production of aromatic amino acids and the aromatic amino acid intermediate shikimate; and methods related to the production of aromatic amino acids, the aromatic amino acid intermediate shikimate, and commodity chemicals derived therefrom.
摘要:
The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. Polypeptides, including enzymes and antibodies, and nucleic acids of the invention can be used in industrial, experimental, food and feed processing, nutritional and pharmaceutical applications, e.g., for food and feed supplements, colorants, neutraceuticals, cosmetic and pharmaceutical needs.
摘要:
The present invention relates to the use of dihydroxyacetone ("DHA") in the preparation of a number of natural and rare carbohydrates. The present invention comprises three stages. In the first stage of the present invention, syngas and formaldehyde are produced from natural gas, biogas, biomass and C02 from industrial plants including electricity generating plants, steel mills, cement factories and bio refineries. In the second stage of the present invention, formaldehyde and syngas from first stage are condensed to produce DHA. In the third stage of the present invention, DHA serves as a starting material for the synthesis of natural and rare carbohydrates using enzymes belonging to isomerase, aldolases, epimerase and transketolase groups.
摘要:
The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. Polypeptides, including enzymes and antibodies, and nucleic acids of the invention can be used in industrial, experimental, food and feed processing, nutritional and pharmaceutical applications, e.g., for food and feed supplements, colorants, neutraceuticals, cosmetic and pharmaceutical needs.