Abstract:
A method for manufacturing a ground engaging component (200) is disclosed. The method includes providing a mixture of compacted powders including carbon, titanium, and a first alloy, the first alloy having a first composition and heating the mixture to a temperature and for a duration sufficient to combine the mixture to form an insert (202) having a desired shape. The method further includes locating the insert (202) in a desired position in a mold and casting a second alloy having a second composition into the mold, the second alloy forming a ground engaging component (200) with the insert (202) bonded therein.
Abstract:
Embodiments of wear resistant ferrous alloys are disclosed herein. In some embodiments, ferrous alloys can have a matrix which includes near spherical and hypereutectic borides and/or borocarbides while at the same time avoiding the formation of rod-like borides and/or borocarbides. In some embodiments, the wear resistant ferrous alloys can be used as a coating, such as a hardfacing layer, to add protection to different components.
Abstract:
Disclosed herein are embodiments of alloys which can be used for hardfacing applications, and hardfacing layers themselves. In particular, embodiments of the alloys can have high hardness as well as impact resistance. These advantageous properties can occur due to the inclusion of hardfacing particles, as well as other compositional, microstructural, thermodynamic, and performance criteria.
Abstract:
A refining element for disc refiners, where the refining element on the front side is provided with a pattern of refining members, and a method of manufacturing the same. At least a layer on the front side of the element comprises grains with a size of 0.05-0.8 mm and a hardness exceeding 1000 HV (Vickers), which grains by cold isostatic pressing are included in a matrix of a softer material, such as a steel alloy. The grains constitute 10-15 % by weight. According to the manufacturing method, the grains are mixed with a powder of the softer material, the mixture is placed in a mould and subjected to cold isostatic pressing with a compacting pressure of 2500-7000 bar, whereafter the resulting layer is sintered. This layer can constitute the entire refining segment or at least the front side thereof.
Abstract:
A matrix-bonded carbide-containing material of high hardness is prepared using a mixture containing a matrix alloy having a composition in weight percent of from about 15 to about 45 percent chromium, from 0 to about 3 percent silicon, from about 2 to about 6 percent boron, from about 3 to about 11 percent titanium (either as metal or as a compound), balance iron and impurities, and a mass of tungsten carbide particles, the tungsten carbide particles preferably being present in an amount of from about 15 to about 60 percent by weight of the total mixture and the matrix alloy preferably being present in an amount of from about 85 to about 40 percent by weight of the total mixture. The matrix alloy is melted to produce a flowable mixture having a liquid phase and solid tungsten carbide particles, and thereafter solidified. During melting, the tungsten carbide particle size is reduced by interaction with the liquid phase. The melting can be accomplished by a conventional melt casting procedure, or by welding or other technique that produces a liquid matrix phase. The fine tungsten carbide particles produced during melting exhibit little if any settling, so that the final solidified product is macroscopically homogeneous.
Abstract:
Powder mixture for use in the manufacture of a three-dimensional object by means of an additive manufacturing method, wherein the powder mixture comprises a first material and a second material, wherein the first material comprises a steel in powder form, wherein the second material comprises a reinforcement material different from the first material, and wherein the powder mixture is adapted to form a composite object when solidified by means of an electromagnetic and/or particle radiation in the additive manufacturing method.
Abstract:
Verwendung eines duktilen Verbundwerkstoffes aus Metall und einer Titanverbindungen enthaltenden Keramik für Bauteile, die in direktem Kontakt mit Aluminiumschmelzen stehen. Der verwendete duktile Verbundwerkstoff besteht aus 40 bis 99 Vol.% Metall, insbesondere Stahl, und 1 bis 60 Vol.% einer Titanverbindungen enthaltenden Keramik. Eingesetzt werden dabei Erzeugnisse, die mittels Press verfahren bei Raumtemperatur von Granulaten oder Pulvern oder Faserns aus Metall und Keramik, Gießverfahren auf der Basis von metallokeramischen Schlickern auf wässriger oder nicht-wässriger Basis oder Extrusionsverfahren auf der Basis von bei Raumtemperatur bildsamen, knetbaren metallokeramischen Massen geformt werden, anschließend getrocknet, entbindert und unter Schutzgasatmosphäre oder Vakuum im Temperaturbereich 1000°C bis 1500°C gesintert werden.
Abstract:
A hardfacing (301) disposable on a surface of a component (306), such as a wellsite component, is disclosed. The hardfacing includes a surface portion and a bottom portion with a segregation line (428) defined therebetween. The surface portion and the bottom portion each include a matrix phase (434) including a matrix composition made of a metal alloy and a hard phase (436) distributed in the matrix phase. The hard phase may include an abrasion-resistant composition made of a hard material (e.g., vanadium carbide). The surface portion (426a) has a first concentration of the abrasion- resistant composition and the bottom portion (426b) has a second concentration of the abrasion-resistant composition with the first concentration being greater than the second concentration such that a wear resistant surface is defined on the surface of the component.
Abstract:
Die Erfindung betrifft ein tribologisches System, umfassend einen aus Sinterwerkstoff hergestellten Ventilsitzring und ein unbehandeltes oder zumindest im Sitzbereich gehärtetes und/oder gepanzertes Ventil, das dadurch gekennzeichnet ist, dass der Sinterwerkstoff durch Pressen und Sintern einer Pulvermischung mit einer Zusammensetzung von 5 bis 45 Gew.-% einer oder mehrerer Hartphasen auf Fe-Basis, 0 bis 2 Gew.-% Graphitpartikel, 0 bis 2 Gew.-% MnS-, 0 bis 2 Gew.-% MoS 2 -, 0 bis 2 Gew.-% FeP-Pulver, 0 bis 7 Gew.-% Cu- und 0 bis 4 Gew.-% Co-Pulver, 0,1 bis 1,0 Gew.-% eines Presshilfsmittels, Schnellarbeitsstahl mit einer Zusammensetzung von 14 bis 18 Gew.-% Cr, 1,2 bis 1,9 Gew.-% C, 0,1 bis 0,9 Gew.-% Si, 0,5 bis 2,5 Gew.-% V, 0,5 bis 2,5 Gew.-% W, 0,5 bis 2,5 Gew.-% Mo, und als Rest Fe sowie herstellungsbedingte Verunreinigungen, insbesondere durch Ni, Cu, Co, Ca und/oder Mn mit Anteilen