Abstract:
Generally, the present disclosure is directed various embodiments to additively manufacture AM preforms to reduce, prevent, and/or eliminate defects that occur in post processing operations (e.g. forging, shot peening, machining, or other post processing operations),
Abstract:
Systems and methods for the manufacture of a solid wire using additive manufacturing techniques are disclosed. In one embodiment, a fine powdery material is sintered or melted or soldered or metallurgically bonded onto a metal strip substrate in a compacted solid form or a near-net shape (e.g., a near-net solid wire shape) before being turned into a final product through forming or drawing dies.
Abstract:
The example methods and apparatus reduce and/or eliminate adverse effects of welding work pieces having dissimilar compositions. An example method includes depositing a first weld layer (106) on a first end of a first work piece (102). The first work piece has a first content of a metallic element and the first weld layer has a second content of the metallic element higher than the first content. The example method includes depositing a second weld layer (108) between the first weld layer and a second end of a second work piece (104) to couple the first work piece to the second work piece. The second weld layer has a third content of the metallic element higher than the second content, and the second work piece has a fourth content of the metallic element higher than the first content.
Abstract:
One aspect of the disclosure provides an iron-based hardfacing layer which includes hard or wear resistant phases resulting at least in part from dissolution of silicon and/or boron carbide particles into a liquid iron-based metal during the fabrication process. In an embodiment, the hardfacing layer is formed by a fusion welding process in which carbide particles are added to the molten weld pool. In an example, the filler metal supplied to the welding process is a mild steel. In an embodiment, the hardness as measured at the surface of the hardfacing ranges from 40 to 65 HRC. In an example, the iron-based hardfacing layer also includes tungsten carbide particles.
Abstract:
An optical manufacturing process sensing and status indication system is taught that is able to utilize optical emissions from a manufacturing process to infer the state of the process. In one case, it is able to use these optical emissions to distinguish thermal phenomena on two timescales and to perform feature extraction and classification so that nominal process conditions may be uniquely distinguished from off-nominal process conditions at a given instant in time or over a sequential series of instants in time occurring over the duration of the manufacturing process. In other case, it is able to utilize these optical emissions to derive corresponding spectra and identify features within those spectra so that nominal process conditions may be uniquely distinguished from off-nominal process conditions at a given instant in time or over a sequential series of instants in time occurring over the duration of the manufacturing process.