Abstract:
An intake and exhaust system for use with international combustion engines that uses two intake valves (14) and one exhaust valve (16) for each cylinder (12). The three valves are preferably round and spaced around the cylinder centerline in the cylinder head. The two intake valves (14) may be spaced closer to the exhaust valve (16) than to each other. The two intake valves may, alternatively, be spaced closer to each other than to the exhaust valve and two spark plugs (18) may be provided, each lying between an intake valve (14) and the exhaust valve (16). For best results, the two intake valves (14) have substantially equal diameters, with the diameter of the exhaust valve (16) having a ratio to the diameter of an intake valve (14) of from about 1:1 to 1:1:2. The head has three substantially hemispheric depressions (26), each housing one of said valves. Squish areas are preferably provided between each pair of adjacent valves around the combustion chamber perpiphery. This invention provides a fast and uniform lean-burn, permits use of a high compression ratio and lower octane, unleaded gasoline and provides improved thermal efficiency.
Abstract:
A fuel injection system (10) is disclosed comprising a high pressure actuating fluid pump (332), a first plurality of hydraulically-actuated unit injectors (18), and a first high pressure actuating fluid manifold (334) arranged in fluid communication with each of the first plurality of unit injectors (18). The system further comprises a second plurality of hydraulically-actuated unit injectors (18), a second high pressure actuating fluid manifold (336) arranged in fluid communication with each of the second plurality of unit injectors (18), and a device (338) for controlling Helmholtz resonation of pressure waves between the manifolds (334, 336) and/or between the pump (332) and either manifold (334, 336). Hydraulically-actuated unit injector fuel systems, having multiple manifolds for supplying high pressure actuating fluid to the unit injectors, can establish a Helmholtz resonance effect between the manifolds. The present invention controls the creation of Helmholtz resonance between the manifolds (334, 336) and also between the pump (332) and either manifold (334, 336).
Abstract:
A direct injection type compression ignition internal combustion engine in which a collision surface (13) is formed in a cavity (7) formed in turn in the top surface of a piston (2), and in which fuel is injected from a fuel injection valve (15) toward the collison surface (13) in the form of a continuous flow of fluid. A fuel injection starting time is set at around the top dead center of compression so as to effect an initial combustion in the cavity (7). Fuel caused to collide against the collision surface (13) is taken into a squash area (23) by a reverse squash flow generated when the piston (2) lowers after it has reached the top dead center of compression, with the most part of combustion following the initial combustion being effected in the squash area (23) after the piston has reached the compression top dead center.
Abstract:
A compression ignition, internal combustion engine has at least one pair of pistons (13, 14) operating in separate cylinders (11a, 12a) interconnected through a transfer port (19). Said at least one pair of pistons (13, 14) includes a leading piston (14) linked to a leading crankshaft (16) and operating in a leading cylinder (12a), and a trailing piston (13) linked to a trailing crankshaft (15) and operating in a trailing cylinder (11a). For the purpose of varying the compression ratio, the phase relation between said leading (14) and trailing (13) pistons is varied by means of a phase adjustment mechanism (22-26) which opratively couples the leading (16) and trailing (15) crankshafts of the engine. The fuel is injected into the leading cylinder (12a) by means of a centrally situated multi-hole fuel injector (64). The clearance volume of the trailing cylinder (11a) is at a practical minimum in order to maximize the amount of air available for combustion in the leading cylinder (12a).
Abstract:
A variable compression ratio engine has a pair of crankshafts (15, 16) connected by a phase adjuster mechanism operative to change the phase angle between the crankshafts so as to vary the compression ratio of the engine. The phase adjuster mechanism includes two pairs of helical phasing gears (23, 24, 25, 26). Each of those pairs consists of a gear (23, 26) fixedly mounted on a crankshaft (15, 16) and, operatively engaged therewith, gear (24, 25) fixedly mounted on an axially movable adjuster member (22).
Abstract:
A combustion chamber of a direct-injection Diesel engine in which a throttle (73) is provided at the inlet of a combustion chamber (72), a plurality of recesses (74) are formed in the side surface of the chamber (72), and fuel nozzles (75) having one more jet ports than the number of the recesses (74) are provided at equal intervals for injecting fuel. When the recesses (74) are formed, the thickness of the top face (78) of the piston is reduced, and thermal breakage can occur at steps in valve escapes (79, 80) if the valve escapes (79, 80) of gas supply and exhaust valves are recessed into the piston (71). Accordingly, steps (81, 82) for the escapes (79, 80) are formed in the recesses (74). Further, the side surface (77) of the combustion chamber onto which sprayed fuel hits is inclined so that it is at an angle of 45o to the top surface (78) of the piston. With the above structure, the optimal combustion can be obtained over the entire rotational zone, and steady combustion can also be obtained.
Abstract:
Un moteur à combustion interne comprend un piston (1) possédant une cuvette de combustion en retrait (3) pourvue d'un élément en saillie (4) sur le fond de la cuvette définissant un tore avec les côtés de la cuvette, un moyen de tourbillon servant à provoquer la rotation de l'air d'admission autour de cet élément en saillie, et un carburateur à injection (2) possédant des orifices qui pulvérisent une pluralité de jets dans le tore à des points espacés autour de l'élément en saillie (4), la section transversale du tore étant variable autour de l'élément en saillie (4) et possédant une valeur minimum dans un plan médian (DD) au travers de l'axe (C) de l'élément en saillie (4) et la tuyère d'injecteur (2) étant située dans une région centrale de la cuvette (3) et possédant des orifices orientés de manière à diriger les jets de carburant des deux côtés du plan médian. La section transversale du tore est modifiée en faisant varier la largeur radiale du tore, ce qui est obtenu avantageusement dans une cuvette circulaire en décalant l'axe (C) de l'élément en saillie (4) radialement depuis l'axe de la cuvette (A). Les deux axes se trouvent alors sur le plan médian (DD) au travers de la partie la plus étroite du tore. La tuyère d'injecteur (2) est aussi disposée le long du plan médian (DD) et dirige les jets de carburant dans les quatre cadrans du tore définis par le plan médian (DD) et le plan perpendiculaire (EE) au travers de l'axe (A) de la cuvette (3).
Abstract:
Die Erfindung betrifft einen Kolben (10) für eine Hubkolben-Brennkraftmaschine, mit einem Kolbenboden (12), welcher eine muldenförmige Vertiefung (14) aufweist, die in einem Randbereich (16) des Kolbens (10) zumindest bereichsweise von wenigstens einer Quetschfläche (18) begrenzt ist, welche in Umfangsrichtung (20) durch wenigstens eine Ausnehmung (22) in zumindest zwei Quetschflächenteile (24) unterteilt ist, wobei die Ausnehmung (22) in Randbereichen (30) dieser von Kanten (32) des Kolbenbodens (12) begrenzt ist, wobei die Kanten (32) des Kobenbodens (12) vollständig bogenförmig ausgebildet sind und die durch die Kanten (32) begrenzte Ausnehmung (22) in radialer Richtung (34) des Kolbens (10) gegenüber der muldenförmigen Vertiefung (14) unter Ausbildung einer Stufe (42) zurückversetzt ist.
Abstract:
Die vorliegende Erfindung betrifft eine Fahrzeug-Kolben-Brennkraftmaschine 10 mit zumindest einem Zylinder, mit einem Kolben 1 im Zylinder, der eine Mulde 2 aufweist, und mit einem Zylinderkopf, der zu einer dachförmigen Geometrie des Kolbens 1 eine entgegengesetzte Dachform mit einer ersten und einer zweiten Seite aufweist, die giebelförmig zusammenlaufen. Der Kolben 1 und der Zylinderkopf definieren eine Ober- und eine Unterseite einer Brennkammer, wobei eine Zündeinrichtung vorgesehen ist, die zumindest annähernd mittig in der Dachform angeordnet ist. Zwei Einlassventile 5 sind in der ersten Seite 6 angeordnet und zwei Auslassventile 4 sind in der zweiten Seite 7 angeordnet. Die Mulde 2 erstreckt sich über beide Seiten, wobei die Mulde 2 seitlich annähernd senkrecht abfallende Seiten und einen zumindest annähernd ebenen Boden umfasst, und der Kolben mindestens zwei, vorzugsweise vier Quetschflächen aufweist, die Öffnungsbereiche zwischen den Ventilen voneinander trennen.