Abstract:
La présente invention concerne un ensemble rotatif (1), notamment pour un appareil de mesure rhéologique, comprenant : un stator (3), un rotor (2) mobile en rotation par rapport au stator (3), le rotor (2) étant maintenu axialement par un moyen de maintien axial (4) empêchant le déplacement du rotor (2) le long de son axe (A) de rotation,le moyen de maintien axial (4) comprenant une tige flexible adaptée pour être fixée à un bâti (5) et qui autorise un déplacement radial du rotor (2), un palier magnétique comprenant un élément en matériau magnétique (6) de rotor monté sur le rotor (2) et un élément en matériau magnétique (7) de stator monté sur le stator (3), l'un au moins des éléments en matériau magnétique de rotor et de stator étant un aimant sphérique, dans lequel l'ensemble rotatif (1) présente une position stable dans laquelle le rotor (2) est aligné avec son axe (A) de rotation, et les éléments en matériau magnétique sont en regard l'un de l'autre selon l'axe (A) de rotation du rotor et sont séparés l'un de l'autre d'une distance (M) déterminée, et dans lequel les éléments en matériau magnétique sont configurés pour s'attirer l'un vers l'autre, de sorte à générer une force de rappel qui s'oppose au désaxement dudit rotor (2). L'invention se rapporte également à un appareil de mesure rhéologique comprenant au moins un tel ensemble rotatif (1).
Abstract:
The present invention provides a device and a method to enhance thrust load capacity in a rotor-bearing system. The load-enhancing device comprises a stator and a rotor arranged in such as way as to achieve a magnetic thrust load capacity enhancement by employing a number of permanent magnets, which produce an attracting force or an expulsing force between the rotor and the stator.
Abstract:
The invention relates to a rotationally symmetrical magnetic bearing cell (1) with a rotor (2) arranged to rotate about the central axis (10) of the cell (1) and having a shaft (4) and at least two axially magnetised permanent magnet rings (5, 6, 30) fitted an axial distance apart on the shaft, and with a stator (3) having pole components (12, 13, 16, 17) and two annular coils (14, 15) associated with the rotor end faces. To improve the radial rigidity without increasing active control complexity, it is proposed that pole components (26, 27, 38) of magnetically conductive material be provided for the peripheral regions of the two axially outer permanent magnet rings (5, 6 or 5, 30) to direct the magnetic flux generated by the annular coils (14, 15) into two substantially independent magnetic flux circuits (28, 29).
Abstract:
Lagereinrichtung (100) zur berührungsfreien Lagerung eines Rotors gegen einen Stator (101). Die Lagereinrichtung (100) weist einen Rotor mit einer Welle (102) und zumindest einer Rotorscheibe (103) sowie einen Stator (101) mit zumindest zwei Statorscheiben (105, 106) auf, wobei der Stator (101) den Rotor unter gegenseitiger Beabstandung zumindest teilweise umgibt und die Rotorscheibe (103) unter Ausbildung eines Lagerspalts (107) in den Zwischenraum (104) zwischen den Rotorscheiben (105, 106) ragt. Die Lagereinrichtung (100) weist weiterhin ein Magnetlagerteil zu einer radialen Lagerung des Rotors und einen Luftlagerteil zu einer axialen Lagerung des Rotors auf.
Abstract:
Die Magnetlagereinrichtung (12) enthält radial ineinander greifende weichmagnetische Rotorscheibenelemente (4i) und weichmagnetische Statorscheibenelemente (7i). Diese Elemente (4i, 7i) sind auf ihren jeweils einander zugewandten Seiten mit ringförmigen zahnartigen Fortsätzen (4f bzw. 7f) versehen, die sich über einen Luftspalt (8k) gegenüberstehen. Außerdem sind den Rotorscheibenelementen (4i) oder den Statorscheibenelementen (7i) magnetfelderzeugende Mittel (7m) zum Erzeugen eines zwischen den Scheibenelementen (4i, 7i) in axialer Richtung gerichteten Magnetflusses (Mf) zugeordnet.
Abstract:
The invention relates to a mounting for a turbo-machine rotor (16). Said mounting is characterized in that radial support of the rotor is assured by one or more permanent magnet bearings (20, 22). One or more single-thrust sliding bearings (24) provide axial support. The permanent magnet bearings (20, 22) also serve as a lifting device for the sliding surfaces of the hydrodynamic sliding bearings (24). A force (A), acting in the opposite direction from the axial force (B), is generated by axial displacement of the rotor-sided bearing elements (28) of the permanent magnet bearing (22), in relation to the housing-sided bearing elements (30), counter to the direction of axial force (B). This force (A) separates the sliding surfaces of the hydrodynamic sliding bearings (24) from each other in the stopping phases of the rotor. Once it has come to a stop, and when it is in the starting and stopping phases, the rotor is guided by one or more sliding or rolling bearings. These are so configured that, at low rotational speed and when at a standstill, they have a substantially lower moment of friction than the hydrodynamic sliding bearings used in the mounting.
Abstract:
The invention relates to a bearing device (100) for the contactless bearing of a rotor in relation to a stator (101). Said bearing device (100) comprises a rotor provided with a shaft (102) and at least one rotor disk (103), and a stator (101) provided with at least two stator disks (105, 106). Said stator (101) at least partially surrounds the rotor at a certain distance and the rotor disks (103) protrude into the intermediate chamber (104) between the rotor disks thus forming a bearing gap (107). Said bearing device (100) also comprises a magnetic bearing part for bearing the rotor in a radial manner and an air bearing part for bearing the rotor in an axial manner.
Abstract:
The magnetic bearing device (12) contains soft-magnetic rotor disc elements (4i), which radially engage inside one another, and soft-magnetic stator disc elements (7i). These elements (4i, 7i) are, on their sides facing one another, provided with annular tooth-like projections (4f or 7f) that are opposite one another on either side of an air gap (8k). In addition, magnetic field generating means (7m) for generating a magnetic flux (Mf) oriented in an axial direction between the disc elements (4i, 7i) are assigned to the rotor disc elements (4i) or to the stator disc elements (7i).
Abstract:
A full levitation magnetic bearing system for support of a rotating body (71), such as a flywheel (92), about an axis of rotation includes passive radial magnetic bearings (70) that generate passive radial centering forces to counteract displacements of the rotating body (71) from its axis of rotation during rotation, and an axial actuator (102) for stabilizing the axial position of the rotating body (71). The passive radial magnetic bearings (70) include multiple concentric, radially spaced apart, axially magnetized ring magnets (73) on a stationary stator (72) and magnetically co-operating concentric pole rings (74) on a ferromagnetic end portion of a rotor (71). The rotor pole rings (74) are axially aligned with the magnet rings (73) when the rotor (71) is radially centered on the stator (72). Magnetic flux from the permanent magnet rings (73) passes directly across the airgap (78) between the axially facing surfaces of the magnet rings (73) and the rotor pole rings (74) and through rotating ferromagnetic section of the rotor (71), thereby generating both an axial attractive force and a passive radial centering force from the pole rings (74) tending to align with the stationary magnetized rings (73).
Abstract:
An electrodynamic actuator (1) comprises a stator actuator part (21) having a stator magnetic circuit member (22), and a rotor actuator part (11) having a rotationally symmetric rotor magnetic circuit member (12). The actuator further comprises a magnet (31) inducing a magnetic flux (32) through a magnetic circuit (30) comprising the stator and rotor magnetic circuit members. A first side (15) of the rotor magnetic circuit member faces a first side (25) of the stator magnetic circuit member, both exhibiting a variable reluctance or a variable magnetization in a radial direction (3). The stator actuator part further comprises an electrically conducting loop (40) encircling a portion (28) of the stator magnetic circuit member, which portion is arranged for conducting a magnetic flux through the electrically conducting loop. The portion is arranged for causing the flux to change when the rotor and stator actuator parts are moved radially relative each other.