Abstract:
The invention relates to a mechanical seal arrangement comprising a rotatable sliding ring (2), a stationary sliding ring (3) and a secondary seal device (5), said secondary seal device (5) being in a single piece and comprising a secondary seal (51) and a ring element (52) of different materials, and the ring element (52) being arranged on the secondary seal (51) on a side directed to the stationary sliding ring (3).
Abstract:
Die vorliegende Erfindung betrifft ein Dichtungselement, insbesondere Sekundärdichtungselement einer Gleitringdichtung, mit einem Basiskörper (11) aus nachgiebigem Material mit unter einem Winkel zueinander stehenden Flächenbereichen (12, 13), von denen wenigstens einer einen Dichtungsbereich vorsieht, und einer Verstärkung mit erhöhter Steifigkeit an einem Eckbereich (15) des Dichtungselementes, der von den Flächenbereichen definiert ist, wobei der versteifte Eckbereich (15) integraler Teil des Basiskörpers (11) ist.
Abstract:
A mechanical sealing device and a pump comprising a mechanical sealing device are described. The sealing device comprises a first seal element (11) and a first holder element (12) holding the first seal element. The first seal element (11) forms a first seal surface (13), an opposite backing surface (14) and an outer peripheral surface (15). The first holder element has a support surface (16) and an inner surface (17). A second seal element (21), forming a second seal surface (22), is rotating in relation to the first seal element around an axis (x) of rotation so that the first seal surface (13) abuts sealingly the second seal surface (22) in a radial plane. An elastomer element (30) is provided between the outer peripheral surface (15) and the inner surface. The opposite backing surface abuts tightly the support surface.
Abstract:
The invention relates to a device which is used to guide at least two flow media having different pressures with a shaft or similar force-transmitting element (10), and a pressure insulating element such as a housing surrounding the shaft or similar. Areas (90a; 96; 98) arranged next to each other in the direction of the axis are determined between the force-transmitting element (10) and the pressure-insulating element by means of sealing elements (70); at least one of the preferably magnetofluidic sealing elements (70) is leakage-free, and two areas (90a; 98) for fluids (A, B) having different pressures flank an area (96) for an auxiliary liquid (H), whereby said area is subdivided by a device (100) into two partial areas (96a, 96b) for two different pressure areas. A conveying medium is allocated to the area (90a) at high pressure and ambient air is allocated to the area (98) at low pressure. The auxiliary liquid (H) is a carrier oil of the magnetofluid, optionally a silicon oil, allocated to the sealing element (70).
Abstract:
A mechanical seal having a single rotatable seal ring having a pair of concentric seal faces to form a radially inner seal face and a radially outer seal face. The mechanical seal also includes first and second stationary seal rings, each having a seal face, where the seal face of the first stationary seal ring contacts the radially outer seal face of the rotatable seal ring and the seal face of the second stationary seal ring contacts the radially inner seal face of the rotatable seal ring. The seal also includes a sleeve adapted to be mounted about the rotating shaft and rotatably coupled thereto and to the rotatable seal ring, said sleeve having a flange portion that is configured for housing at least a portion of the rotatable seal ring, and a gland for housing at least partially the single rotary seal ring and the first and second stationary seal rings. Under positive and negative pressure conditions, the combined area of the seal piston areas are substantially identical to provide a balanced seal arrangement without requiring the use of axially movable components.
Abstract:
A mechanical seal incorporates a metal bellows arrangement (1) which has a bellows unit (3) located between first and second end rings (5 and 7). The first end ring carries a seal face (9) and the second end ring is attached to a further seal component (11). The second end ring is associated with a sealing ring (17, 19) which is located between the second end ring and the other seal component. The second end ring is shaped to accommodate the sealing ring in a plurality of different cross-sectional shapes.
Abstract:
A rotary mechanical seal for a rotating shaft passing into a pressure vessel, the seal having stationary and rotating seal rings (12) with at least one of the rings (12) supported in an axially biased holder (9), characterised by an elastomeric annular member (11) held in a groove, which groove is so designed as to obviate clogging or crystallising in the gap between the seal face holder (9) and the housing (10). Preferably, the groove has a protrusion located on its outer edge which has sloped inner and outer faces to co-operate with the annular elastomeric member (11) so that the member (11) protrudes past or is flush with the edge.
Abstract:
A mechanical seal comprises an elastomeric member (3), a spring biasing member (8), a longitudinally floating first member (5), a longitudinally non-floating second member (4), a longitudinally floating third member (9) and a longitudinally floating seal face (7). The elastomeric member is in sealing engagement with the seal face and the first and second members and the spring biasing member is longitudinally pointed between the seal face and the third member. The first and second members are longitudinally restrained and rotationally coupled by male longitudinally protruding portions (12) engaging with female portions (11).
Abstract:
Die Erfindung betrifft eine Anordnung mit einer Gasdichtung (GS), einen Stator (S) und einem sich entlang einer Achse (X) erstreckenden Rotor (R) zur Abdichtung eines Dichtspalts (SGP) zwischen dem Rotor (R) und dem Stator (S) umfassend einen rotierenden Rotordichtring (RSR) und einen statischen Statordichtring (SSR), umfassend ein rotierendes Befestigungselement (FE), welches den Rotordichtring (RSR) an dem Rotor (R) axial festlegt, wobei das Befestigungselement (FE) sich zumindest über einen Teil des Umfangs in Umfangsrichtung (CD) erstreckt, wobei das Befestigungselement (FE) zumindest teilweise in einem sich axial und in Umfangsrichtung (CD) erstreckenden Spalt (GP) von radialer Spalthöhe (GH) zwischen dem Rotor (R) und dem rotierenden Rotordichtring (RSR) angeordnet ist, wobei der Spalt (GP) seitens des rotierenden Rotordichtrings (RSR) von einer Dichtringoberfläche (SRS) und seitens des Rotors (R) von einer Rotoroberfläche (RS) definiert ist, wobei die Dichtringoberfläche (SRS) eine erste Vertiefung (SRD) und die Rotoroberfläche (RS) eine zweite Vertiefung (RSD) aufweisen, wobei das Befestigungselement (FE) teilweise in der ersten Vertiefung (SRD) und teilweise in der zweiten Vertiefung (RSD) angeordnet ist, derart, dass eine axiale Relativbewegung über einen Solllagebereich hinaus zwischen dem rotierenden Rotordichtring (RSR) und dem Rotor (R) nur über eine radiale Verformung des Befestigungselementes (FE) möglich ist.