摘要:
본 발명은 순환 송풍을 이용한 우산건조기에 관한 것으로서, 상단부와 하단부가 개방되어 있으며 다수의 토출구(14)가 형성되어 있는 역원추형의 내관(10)과; 상기 내관(10)과 간극이 형성되도록 상기 내관(10)의 외측으로부터 소정의 거리로 이격되며 상단부와 하단부가 상기 내관(10)과 연결되어 있는 외관(20)과; 송풍을 발생하는 블로워(30)와; 상기 블로워(30)를 통하여 발생된 송풍을 상기 외관(20)과 내관(10) 사이의 간극으로 이동시키기 위하여 상기 블로워(30)와 상기 외관(20)을 연결하는 배기관(32)과; 상기 내관(10)의 개방되어진 하단부와 기밀하게 연결되며 물통(42)이 출입 가능하게 삽입되어 있는 빗물저장부(40)와; 상기 빗물저장부(40)와 상기 블로워(30)를 연결하는 흡기관(34)과; 상기 내관(10)의 상단부에 위치하고 우산이 투입될 수 있도록 내측이 개방되어 있으며, 우산 투입 시 상기 블로워(30)를 작동시킬 수 있도록 물체를 감지하는 센서(52)가 구비되어 있는 우산투입구(50)를 포함한다.
摘要:
본 발명에 따른 복합 건조 시스템은, 마이크로 웨이브 발생기를 냉각시킨 냉각수의 열을 축열조에 축열한 후, 히트 펌프에 공급하여 방열함으로써, 피건조물의 투입, 배출 및 교체 등을 위해 마이크로 웨이브 발생기의 작동이 중지되는 경우에도 상기 축열조에 저장된 열을 증발기의 열원으로 계속해서 공급할 수 있으므로, 안정적인 열원 확보가 가능하다. 또한, 축열조에 저장된 고온의 냉각수 중 일부를 증발기의 표면에 분사시켜, 증발기의 열교환 효율을 향상시킬 수 있다.
摘要:
Die Erfindung betrifft eine Vorrichtung zum Trocknen und Vorwärmen von partikelförmigem Beschickungsgut (5) für Glas-Schmelzanlagen mit einem senkrechten Schacht (1) in dem etagenweise mehrere Gasführungen (15) angeordnet sind, wobei der Schacht (1) mit mindestens einem Gaskanal (13) für Abgase aus der Schmelzanlage versehen ist. Zur Lösung der Aufgabe, eine Vorrichtung anzugeben, durch die das Beschickungsgut (5) innerhalb des Schachtes (1) derart in Bewegung gehalten wird, dass ein Verkleben der Partikel verhindert oder unterbrochen und einer Verklebungsneigung entgegen gewirkt wird, wird erfindungsgemäss vorgeschlagen, dass a) innerhalb des Schachtes (1) und mit allseitigen seitlichen Abständen etagenweise übereinander Führungselemente (8) für das Beschickungsgut (5) angeordnet sind, durch die jeweils ein Teil der Gasführungen (15) hindurchgeführt ist, b) mindestens ein Teil der Führungselemente (8) unabhängig voneinander quer zum Schacht (1) beweglich gelagert ist, c) die Führungselemente (8) an ihren oberen Enden mit konvergieren den Schrägflächen (8a) für die Einführung des Beschickungsguts (5) und an ihren unteren Enden mit konvergierenden Schrägflächen (8b) für den Austritt des Beschickungsguts (5) versehen sind, und dass d) mindestens eines der Führungselemente (8) mit einem Rüttelantrieb (11) verbunden ist.
摘要:
Provided are a method of producing a drying device and heating means having simple structures, a dried object obtained by such far-infrared irradiation, and a method of producing a dried object such as Konjaku foodstuff. The drying device and heating means can uniformly dry an object independent of the position of drying by applying minus ions and far-infrared rays, functioning as growing light rays, to the object. The far-infrared rays have far-infrared absorption wavelength in the range of 3 - 16 µm. The drying device has a minus ion air flow sending section (A) having minus ion generation means, and also has object holding members (10) and far-infrared irradiation means that are arranged facing each other. Each far-infrared irradiation means is formed by covering a heat generation section with an insulation plate (B18), covering the surface of the insulation plate (B18) with a metal plate (19), and then covering the surface of the metal plate (19) with a far-infrared generation layer (20). The heat generation sections are each formed by providing a nichrome wire (17) on the surface of an insulation plate (A16) and apply far-infrared rays to objects (21) held by the object holding members (10). The drying device dries the objects (21) by heating them by far-infrared rays while sending minus ion air flow to the objects (21).
摘要:
The invention relates to a method for drying and thermally processing wooden parts in a drying housing that comprises the step of heating a gas flow inside said housing exclusively by the viscous scattering of the mechanical energy at the surface of said wooden parts. The invention also relates to a device for implementing the above method.
摘要:
The evaporator (10) efficiently evaporates solvent and/or introduces gases to multiple samples. The evaporator (10) contains a top plate (20) and a bottom plate (30). The top plate (20) is mated to the bottom plate (30) to define a main chamber (130) for distribution of gas. An input port (80) is defined within the bottom plate (30) of the evaporator (10) is in fluid communication with a gas distribution channel (100). The gas distribution channel (100) has a series of gas distribution ports (11 OA-C) increasing in diameter, in proportion to a distance from the input port (80), that provide for an even distribution of gas into the main chamber (130). Gas exits the main chamber (130) through exit ports (120A-C) defined within the bottom plate (30). Screws (50) respectively control gas flow to exit ports (120A-C) for delivery to an array of nozzles (90) on the bottom plate (30).