Abstract:
A heat sink vessel is disclosed herein. The heat sink vessel includes a body and one or more heating media. The body defines an inner volume. The body includes an upper portion, a middle portion, and a lower portion. The upper portion has a conical entrance for incoming flow of fluid. The middle portion has a first side and a second side. The middle portion interfaces with the upper portion of the first side. The lower portion interfaces with the middle portion on the second side. The lower portion includes an inverted perforated conical liner and a perforated plate. The inverted perforated conical liner and the perforated plate control the flow of fluid exiting the vessel. The one or more heating media is disposed in the inner volume. The one or more heating media is configured to store heat during processing.
Abstract:
A thermal energy storage plant (10) comprises a charging circuit (100) where a first working fluid is circulated, the charging circuit (100) including: - a first fluid transporting machine (110) for generating a flow of the first working fluid in charging circuit (100), - a heating device (120) electrically powered for transfer- ring heat to the first working fluid, - a heat accumulator (130) for storing the thermal energy of the first working fluid, the heat accumulator (130) including a hot end (131) for receiving the first working fluid at a first temperature (T1) and a cold end (132) for letting the first working fluid exit the heat accumulator (130) at a second temperature (T2) lower than the first temperature (T1); the heat accumulator (130) comprises a plurality of heat storage units (135a, 135b, 135c) connected in series between the hot end (131) and the cold end (132), which may be separated by valves (137a, 137b).
Abstract:
Zur Reinigung von Abgas, das Stickoxide in Kombination mit CO, VOCs oder Lachgas enthält, insbesondere von bei der Zementklinker-, Salpetersäure-, Adipinsäure-, Düngemittel- oder Urantrioxidherstellung anfallendem Abgas, wird eine regenerative thermische Nachverbrennungsanlage mit wenigstens zwei Regeneratoren (A, B) verwendet, mit der bei einer Temperatur von 800 - 1000°C in der Brennkammer (1) das CO, die VOCs und das Lachgas thermisch abgereinigt sowie die Stickoxide mittels SCR-Katalysator (6) unter Zuführung einer Stickstoffwasserstoffverbindung thermisch reduziert werden, wobei das bereits thermisch gereinigte Abgas an geeigneter Stelle bei ca. 300°C dem jeweiligen zweigeteilten Regenerator (A oder B) entnommen wird, in konstanter Strömungsrichtung über den SCR-Katalysator (6) geführt und anschließend dem verbleibenden Abschnitt (Α', Β') des Regenerators (A oder B) wieder zugeführt wird.
Abstract:
A turbine bypass system comprises a bypass path (10) which is selectively operable to deliver hot gases to a gas cooler (12) and a pebble bed (16) positioned in the bypass path (10) upstream of the gas cooler (12). The pebble bed (16) absorbs heat from the bypass gases and thereby reduces the temperature of the bypass gases prior to delivery of the bypass gases to the gas cooler (12).
Abstract:
A metal oxide coating (18) has a nanotextured surface (22) defined by a plurality of capillary openings (20) arranged in a pattern on the surface of the coating (18). Each of the capillary openings (20) have a diameter defined by a previously present organic macromolecule. The metal oxide coating (18) is formed by depositing a solution containing uniformly dispersed micelles (10) composed of amphiphilic molecules on a metal, oxide, or plastic substrate. The micelles (10) are self-arranging, in solution, as a result of mutually repulsive electrostatic forces on the surface of the micelles (10), and form a uniformly patterned organic template (14) when the solution is deposited on the surface of the substrate (16). A metal oxide coating is then applied to the substrate (16), which forms a ceramic monolayer that is a negative image of the organic template (14). The organic template (14) is then removed, thereby forming a metal oxide coating (18) having a plurality of macromolecular-sized apertures (20) formed therein.
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren zur Aufnahme, Speicherung und Abgabe von thermischer Energie von Gasen, bei dem ein Bett eines Schüttguts in einem ersten Schritt in einer ersten Strömungsrichtung für eine Zeitperiode ti von einem Gas durchströmt wird, das dabei Wärme oder Kälte an das Schüttgut abgibt, welche vom Schüttgut gespeichert wird, und in einem zweiten Schritt in einer zweiten Strömungsrichtung für eine Zeitperiode t2 von einem Gas durchströmt wird, das dabei Wärme oder Kälte vom Schüttgut aufnimmt, dadurch gekennzeichnet, dass das Verhältnis zwischen Bettdicke b in Strömungsrichtung des Gases und dem mittleren Partikeldurchmesser dP des Schüttguts mindestens 10 beträgt, sowie eine Vorrichtung zur Durchführung dieses Verfahrens.
Abstract:
Les moyens (4) d'échange thermique eau/air sont adaptés à recevoir un courant d'eau froide circulant à l'intérieur de parois desdits moyens dont les faces extérieures sont en contact avec ledit flux d'air. Ils comprennent au moins un module (21, 22, 23, 24, 25) constitué de deux plaques métalliques (26, 27) maintenues à faible distance l'une de l'autre et reliées l'une à l'autre de manière étanche, l'eau froide circulant à l'intérieur de chaque module entre les deux plaques (26, 27), et l'air circulant à l'extérieur des plaques (26, 27).
Abstract:
A method to use high temperature thermal storage for integration into building heating/cooling systems and to meet building's peak power demand. The method can be used to store the thermal energy at any desirable rate and then discharge this stored energy to meet the demand for short or long time intervals. Input energy stored with this method is thermal energy, however, output can be thermal or electric based upon the requirement.
Abstract:
Thermal storage systems that preferably do not create substantially any additional back pressure or create minimal additional back pressure and their applications in combined cycle power plants are disclosed. In one embodiment of the method for efficient response to load variations in a combined cycle power plant, the method includes providing, through a thermal storage tank, a flow path for fluid exiting a gas turbine, placing in the flow path a storage medium comprising high thermal conductivity heat resistance media, preferably particles, the particles being in contact with each other and defining voids between the particles in order to facilitate flow of the fluid in a predetermined direction constituting a longitudinal direction, arrangement of the particles constituting a packed bed, dimensions of the particles and of the packed bed being selected such that a resultant back pressure to the gas turbine is at most a predetermined back pressure.
Abstract:
A regenerative firing system is disclosed which functions in a heat treating furnace or other high temperature technology. The system comprises a plurality of regenerator heat transfer boxes which absorb the heat contained in high temperature exhaust from the furnace. Each regenerator box transfers this absorbed heat to a flow of ambient air. The now heated air flows from the regenerator box into a common air stream which is then fed to a plurality of burners. The preheated air stream is supplied to a common air stream that is then simultaneously provided to each of a plurality of burners. The design of the current system allow for the regenerators to be placed in any convenient location around the furnace. The regenerative system may also be adapted to current heat treating furnaces. In addition, the current invention comprises a method of heat recovery for a furnace utilizing the inventive system. The regenerators produce a common preheated combustion air supply which then flows to a plurality of burners. The heated air produced from each regenerator flows to each of the burners. Each regenerator performs a different step of the method at any given time, allowing each of the burners to continuously fire.