Abstract:
Es wird eine fernbedienbare Waffenstation (l) mit einer Waffe (2), welche in einer Lafette (3) in Azimut und Elevation richtbar gelagert ist, zur Bekämpfung eines Zielobjekts vorgeschlagen. Die Waffenstation (1) umfasst ein Anzeigesystem (4) zur optischen Darstellung eines Zielbereichs der Waffe (2), eine erste Einheit (5) zum Ermitteln eines auf dem Anzeigesystem (4) dargestellten SollTreffpunkts (T1) für ein Geschoss der Waffe (2), eine zweite Einheit (6) zum Ermitteln eines auf dem Anzeigesystem (4) dargestellten Ist-Treffpunkts (T2) des Geschosses der Waffe (2), und eine dritte Einheit (7) zum Bestimmen eines neuen Soll-Treffpunkts (T3) für das Geschoss der Waffe (2) durch eine Punktspiegelung des ermittelten Ist-Treffpunkts (T2) an dem ermittelten Soll-Treffpunkt (T1).
Abstract:
A projectile, that can be tracked optically, which is coated with a fluorescent die or affixed with rearward facing retro-reflectors. Laser emitted radiation forms a cone of light that intersects and illuminates the ballistic path of the projectile. It is possible to manual measurement techniques, spotters or automated tracking of the illuminated projectile. The optically tracked projectile al lows for the adjustment subsequent shots using a manual or automated optical tracking.
Abstract:
A remote targeting system includes a weapon (110), a display (120) on the weapon (110), a radio frequency (RF) receiver (140), a sensor (150) remote from the weapon (110), wherein the sensor (150) is configured to provide image metadata of a predicted impact point B on the weapon display (120), and a targeting device (130) including a data store (537) having ballistic information associated with a plurality of weapons and associated rounds, and a fire control controller (532) wherein the fire control controller (532) determines a predicted impact point B based on the ballistic information, elevation data received from an inertial measurement unit (534), azimuth data received from a magnetic compass (535), position data received from a position determining component (536), wherein the fire control controller (532) is in communication with the inertial measurement unit (534), the magnetic compass 535, and the position determining component (536).
Abstract:
Système téléopéré de traitement de cibles comprenant un robot de tir (1) ayant un support (2) portant une pièce-feu (3) avec un dis- positif optoélectronique de visée (5) donnant une image (I) de la cible, des capteurs (42) détectant la position relative (α, β), de la pièce-feu (3), et des actionneurs (41) positionnant la pièce-feu (3). Une unité centrale (6) reçoit les instructions (IÇ) et les si- gnaux des capteurs (Sα, Sβ) et génère des signaux de commande (SΔα, SΔβ» CT) des actionneurs et de la pièce- feu (3). Un. écran de contrôle (7) affichant l'image (I) et incruste des informations de visée, et un organe de commande (S) (clavier /manette) dirige la ligne de trajectoire (LT).
Abstract:
Described herein is a method of controlling the operation of a missile launcher (12) by predicting the landing position (22) of a missile (16) in flight before it lands. The method includes tracking the missile (16) as it travels along its trajectory (18) until it reaches its apogee (20) and calculating the landing position (22) to provide a feedback correction signal to launcher (12) for the next missile to be launched. By utilising a feedback correction signal in this way, the time to hitting a target (10) from the time of engagement is substantially reduced.
Abstract:
A method of aiming a gun (14) that is mounted on a platform (12) and that has fired a projectile at a target, the firing of the gun (14) causing the platform (12) to vibrate. The method includes tracking the projectile and the target, using a tracking device (20) and inferring an aim error vector from the tracking.
Abstract:
In a process for improving the accuracy of aim of projectiles (15) from a firing installation, the trajectories of pilot projectiles (15) are measured by means of a measurement device (20) and the pilot trajectories (1) so obtained are used to correct the firing elements of the effective projectiles. To this end, one or more pilot projectiles (15) are fired in the direction of possible and/or known targets, and the predetermined parameters which influence the trajectory are calculated on the basis of the pilot trajectories (1), stored and used immediately or later in the calculation of the firing elements. In a simplified variant of the process, the jump error of the effector (10) used to calculate the firing elements are determined only by measuring the initial section of the trajectory of the projectile.
Abstract:
Die vorliegende Erfindung betrifft eine Vorrichtung (10) zur Darstellung von Treffern von Geschossen und/oder Raketen, ein entsprechendes System dazu sowie ein dazugehöriges Verfahren. Hierbei wird eine Vorrichtung (10) bereitgestellt, welche flugfähig ist und Mittel (12) zur optischen und/oder akustischen Darstellung von Treffern vorsieht. Die Vorrichtung (10) sowie die Mittel (12) sind fernsteuerbar und können von einer Zentrale (30) ausgesteuert werden. Zur Steuerung kann die Zentrale (30) dabei durch Positionssatelliten (50) ortbare Objekte orten und die Vorrichtung (10) entsprechend der Ortung steuern.
Abstract:
A system for correcting the aim of a weapon which is operative to launch a projectile from a barrel on a ballistic path toward a target. A rear surface of the projectile is coated with a fluorescent dye that re-emits radiation when excited by laser radiation. The system includes a source of laser radiation (strobe) pulses that form a cone of light. intersecting the ballistic path of the projectile. The strobe pulses are emitted at predetermined times (T1, T2, &Tgr;3,...&Tgr;n) following firing of the projectile (at time T0). An optical detector receives the radiation re-emitted by a the fluorescent dye at the rear of the projectile at times (T1z, T2z, T3z,...&Tgr;nz) producing measurable location signals allowing the system to measure the vertical and lateral positions of the projectile at said times, where "z" is a re-emission delay and T1z, T2z, T3z,...&Tgr;nz, are the respective times T1, T2, &Tgr;3,...&Tgr;n each delayed by amount z.
Abstract:
A system, apparatus and method providing a Processor Aided Weapon Sight (PAWS) for augmenting target environment information associated with an optical weapon sight. One embodiment comprises a weapon sight including a beam splitter, for combining objective scene imagery received on a primary viewing axis with heads up display (HUD) imagery to produce a merged image for propagation towards a viewing point along the primary viewing axis; a presentation device, for generating the HUD imagery; and a computing device, for processing ballistics relevant data and responsively causing the presentation device to adapt an aiming reticle included within the HUD imagery. In various embodiments, the presentation device comprises an imager formed using one of a micro transmissive LCD display and a MEMS micro-mirror array, where the imager is operatively coupled to the computing device and adapted thereby to provide the HUD imagery.