Abstract:
A method includes obtaining a dark-field signal generated from a dark-field CT scan of an object, wherein the dark-field CT scan is at least a 360 degree scan. The method further includes weighting the dark-field signal. The method further includes performing a cone beam reconstruction of the weighted dark-field signal over the 360 degree scan, thereby generating volumetric image data. For an axial cone-beam CT scan, in one non-limiting instance, the cone-beam reconstruction is a full scan FDK cone beam reconstruction. For a helical cone-beam CT scan, in one non-limiting instance, the dark-field signal is rebinned to wedge geometry and the cone-beam reconstruction is a full scan aperture weighted wedge reconstruction. For a helical cone-beam CT scan, in another non-limiting instance, the dark-field signal is rebinned to wedge geometry and the cone-beam reconstruction is a full scan angular weighted wedge reconstruction.
Abstract:
Radiation is directed at an object, and radiation scattered by the object is sensed. An angular distribution of scatter in the sensed scattered radiation relative to a path of the radiation directed at the object is determined, and the angular distribution is evaluated. One or more atomic numbers, or effective atomic numbers, of materials composing the object is determined based on evaluating the angular distribution.
Abstract:
A detector for a small-angle x-ray diffraction system uses curved readout strips shaped to correspond to the expected intensity distribution of x-rays scattered by the system. This expected intensity distribution may be a series of concentric circles, and each of the strips has a shape that approximates a section of an annulus. The strips may be positioned on a substrate such that a center of curvature of the curved strips is located along an edge of a readout region within which the strips are located or, alternatively, at a geometric center of the readout region. The detector may have a signal readout system that uses a delay line or, alternatively, a multichannel readout system. The detector may make use of electron generation via interaction of the diffracted x-ray beam with gas in a gas chamber, or through interaction of the diffracted beam with a semiconductor material.
Abstract:
Methods and systems for reducing the effect of finite source size on illumination beam spot size for Transmission, Small-Angle X-ray Scatterometry (T-SAXS) measurements are described herein. A beam shaping slit having a slender profile is located in close proximity to the specimen under measurement and does not interfere with wafer stage components over the full range of angles of beam incidence. In one embodiment, four independently actuated beam shaping slits are employed to effectively block a portion of an incoming x-ray beam and generate an output beam having a box shaped illumination cross-section. In one aspect, each of the beam shaping slits is located at a different distance from the specimen in a direction aligned with the beam axis. In another aspect, the beam shaping slits are configured to rotate about the beam axis in coordination with the orientation of the specimen.
Abstract:
L'invention concerne un procédé d'analyse d'un objet qui se déroule en deux parties, * une première partie comprenant les étapes : irradiation de l'objet par un rayonnement photonique incident; acquisition d'un spectre transmis par l'objet au moyen d'un détecteur spectrométrique placé en transmission; détermination d'au moins une première caractéristique de l'objet à partir du spectre en transmission mesuré; vérification de !a réalisation d'au moins un critère de suspicion portant sur la première caractéristique de l'objet et traduisant le fait que l'objet contient un matériau potentiellement suspect pour l'application considérée; * et une seconde partie exécutée uniquement lorsque le critère de suspicion est réalisé, et comprenant : acquisition d'un spectre énergétique diffusé par l'objet au moyen d'un détecteur spectrométrique placé en diffusion selon un angle compris entre 1 ° et 15°; détermination d'une seconde caractéristique de l'objet à partir au moins du spectre en diffusion mesuré; * comparaison au moins de la seconde caractéristiques de l'objet avec des caractéristiques de matériaux étalons mémorisées dans une base de données, aux fins d'identification d'un matériau constitutif de l'objet.
Abstract:
Methods and systems for measuring periodic structures using multi-angle X-ray reflectance scatterometry (XRS) are disclosed. For example, a method of measuring a sample by X-ray reflectance scatterometry involves impinging an incident X-ray beam on a sample having a periodic structure to generate a scattered X-ray beam, the incident X-ray beam simultaneously providing a plurality of incident angles and a plurality of azimuthal angles. The method also involves collecting at least a portion of the scattered X-ray beam.
Abstract:
X-ray scattering imaging can provide complementary information about the unresolved microstructures of a sample. The scattering signal can be accessed with various methods based on coherent illumination, which span from self-imaging to speckle scanning. The directional sensitivity of the existing methods is limited to a few directions on the imaging plane and it requires the scanning of the optical components, or the rotation of either the sample or the imaging setup, if the full range of possible scattering directions is desired. Recently such an invention has been presented. However, the method requires a very high resolution and is only applicable to imaging setups where this is possible, such as synchrotron facilities. The present invention discloses a new arrangement that allows the simultaneous acquisition of the scattering images in all possible directions in a single shot without the need of high resolution or highly coherence sources. This is achieved by a specialized optical element and means of recording the generated fringe with sufficient spatial resolution.
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren sowie eine Vorrichtung zur Untersuchung der röntgenografischen Eigenschaften von Proben (3c), wobei die an einer Probe (3c) gestreuten Röntgenstrahlen von einem im Abstand zur Probe (3c) gelegenen Detektor (5) aufgenommen und bezüglich der Probeneigenschaften ausgewertet werden. Erfindungsgemäß ist vorgesehen, dass bei einem vorgegebenen Abstand zwischen der Röntgenstrahlenquelle (1) oder dem Ausgangspunkt (2b) des auf die Probe (3c) gerichteten Röntgenstrahles (10) und dem Detektor (5) für eine vorgegebene Anzahl von aufeinander folgenden Messungen der Abstand (S1, S2) zwischen der Probe (3c) und dem Detektor (5) verändert und auf vorgegebene unterschiedliche Werte eingestellt wird.