-
公开(公告)号:WO2018189589A2
公开(公告)日:2018-10-18
申请号:PCT/IB2018/000472
申请日:2018-04-12
Applicant: NOVABASE BUSINESS SOLUTIONS, S.A.
Inventor: LEAL, Joao , DE FATIMA MACHADO DIAS, Maria , PINTO, Sara , VERRUMA, Pedro , ANTUNES, Bruno , GOMES, Paulo
CPC classification number: G06F17/2785 , G06F16/355 , G06F16/36 , G06F16/93 , G06F17/2705 , G06F17/2715 , G06F17/2735 , G06F17/2755 , G06F17/277 , G06F17/2795 , G06N3/0472 , G06N3/08
Abstract: Disclosed herein are embodiments of systems, devices, and methods automated document analysis and processing using machine leaming techniques. In one embodiment, systems and methods are disclosed for automatically classifying documents. In another embodiment, systems and methods are disclosed for identifying new tags for untagged documents. In another embodiment, systems and methods are disclosed for identifying documents related to a target document.
-
公开(公告)号:WO2019104077A1
公开(公告)日:2019-05-31
申请号:PCT/US2018/062082
申请日:2018-11-20
Applicant: EL KAED, Charbel, Joseph , KHAN, Imran , HOSSAYNI, Hicham
Inventor: EL KAED, Charbel, Joseph , KHAN, Imran , HOSSAYNI, Hicham
IPC: G06F16/2452 , G06F16/36 , G06F16/2458
CPC classification number: G06F16/2477 , G06F16/24526 , G06F16/36
Abstract: Methods and systems are provided for searching time series information in a distributed data processing system. A method of processing a semantic search query comprises receiving a structured search query, processing the structured search query to deconstruct into query elements, identifying a set of connected elements based on the query elements, processing a time series data structure of the identified set of connected elements to determine a command data element, utilizing the command data element to process the time series data structure of the identified set of connected elements, annotating the time series data structure of each of the identified set of connected elements to form a queried data set, and providing the queried data set.
-
公开(公告)号:WO2019041524A1
公开(公告)日:2019-03-07
申请号:PCT/CN2017/108807
申请日:2017-10-31
Applicant: 平安科技(深圳)有限公司
IPC: G06F17/30
Abstract: 一种聚类标签生成方法,该方法包括步骤:针对文本聚类结果构建每个聚类中词语间的语义网络关系(S31);从每个聚类所构建的语义网络关系中抽取具有代表性的关键词,记为聚类关键词(S32);从每个聚类的关键词中抽取区分性最高的关键词,记为每个聚类的标签(S33)。由此可以提升聚类标签的区分度和辨识度。
-
公开(公告)号:WO2018138205A1
公开(公告)日:2018-08-02
申请号:PCT/EP2018/051839
申请日:2018-01-25
Applicant: SIEMENS AKTIENGESELLSCHAFT
Inventor: WANG, Qi , YUAN, Yong , DONG, Ming Kai , ZHANG, Rui Guo , YU, Ming , CAO, Jing , ZHANG, Zhen , ZHANG, Ming
IPC: G06F17/30
CPC classification number: G06F16/33 , G06F16/3334 , G06F16/335 , G06F16/36
Abstract: The present invention provides a model search method based on a semantic model framework, including: a buffering step of buffering and analyzing model query information of a user and buffering relative knowledge; and a query step of querying a model in a buffer, an index, and a data library, comparing a model queried by the user and the model queried in the buffer, the index, and the data library, ranking relative models, returning a ranking result as a search result, and sending the search result to the user. According to the model search method and device based on a semantic model framework provided in the present invention, search for a relative model may be performed at a high response speed, and particularly this is quite practical in a recommendation process in modeling. According to the present invention, query, analysis, and the search result can be provided to buffer the relative knowledge, so as to ensure rapid search in modeling. According to the present invention, self-extension can be performed under the semantic model framework, that is, new knowledge having no classification information is incorporated into the semantic model framework.
-
公开(公告)号:WO2018063924A1
公开(公告)日:2018-04-05
申请号:PCT/US2017/052839
申请日:2017-09-22
Applicant: MICROSOFT TECHNOLOGY LICENSING, LLC
Inventor: HOU, Zhitao , LOU, Jian-Guang , ZHANG, Bo , LIANG, Xiao , ZHANG, Dongmei , ZHANG, Haidong
CPC classification number: G06F17/2785 , G06F16/26 , G06F16/3329 , G06F16/36
Abstract: Implementations of the subject matter described herein relate to conversational data analysis. After a data analysis request is received from a user, heuristic information may be determined based on the data analysis request. The heuristic information mentioned here is not a result for the data analysis request but information which may be used for leading the conversation to proceed. Based on such heuristic information, the user may provide supplementary information associated with the data analysis request, for example, clarify meaning of the data analysis request, submit a relevant further analysis request, and so on. A really desired and meaningful data analysis result can be provided to the user according to the supplementary information provided by the user. Thus, data analysis will become more accurate and effective. While obtaining really helpful information, the user also gains good user experience.
Abstract translation: 这里描述的主题的实现涉及对话数据分析。 在从用户接收到数据分析请求之后,可以基于数据分析请求确定启发信息。 这里提到的启发式信息不是数据分析请求的结果,而是可用于引导对话继续进行的信息。 基于这样的启发式信息,用户可以提供与数据分析请求相关联的补充信息,例如,阐明数据分析请求的含义,提交相关的进一步分析请求等等。 根据用户提供的补充信息,可以向用户提供真正想要的和有意义的数据分析结果。 因此,数据分析将变得更加准确和有效。 在获得真正有用的信息的同时,用户也获得了良好的用户体验。 p>
-
公开(公告)号:WO2019133671A1
公开(公告)日:2019-07-04
申请号:PCT/US2018/067617
申请日:2018-12-27
Applicant: ROBERT BOSCH GMBH , DING, Haibo , HE, Yifan , ZHAO, Lin , XU, Kui , FENG, Zhe
Inventor: DING, Haibo , HE, Yifan , ZHAO, Lin , XU, Kui , FENG, Zhe
CPC classification number: G06F17/2795 , G06F16/36 , G06F17/241 , G06N5/02
Abstract: An automatic terminology linking system includes a candidate generator configured to identify candidate nodes for each terminology that is to be linked to a node of the knowledge base. A pseudo-candidate generator is configured to identify pseudo- candidate nodes for candidate-less terminologies. A candidate scorer is configured to respectively score the candidate nodes and the pseudo-candidate nodes by collective inference using occurrence statistics and co-occurrence statistics for these nodes. The pseudo-candidate generator is configured to identify knowledge base nodes that are semantically-related to candidate-less terminology as the pseudo-candidate nodes for the candidate-less terminology.
-
公开(公告)号:WO2018048683A1
公开(公告)日:2018-03-15
申请号:PCT/US2017/049233
申请日:2017-08-30
Applicant: MICROSOFT TECHNOLOGY LICENSING, LLC
Inventor: ALONSO, Omar , KANDYLAS, Vasileios , TREMBLAY, Serge-Eric
CPC classification number: G06F17/24 , G06F16/24578 , G06F16/285 , G06F16/36 , G06F16/93 , G06F17/2211 , G06F17/2235 , G06F17/2775 , G06Q10/1091 , G06Q30/0201 , G06Q50/01 , H04L51/16 , H04L51/32 , H04L67/306
Abstract: Representative embodiments disclose mechanisms to compile documents into a timeline document that tracks the evolution of a topic over time. Social media documents can be used to identify importance or popularity of linked documents (i.e., documents shared by social media in a post, tweet, etc.). A collection of social media documents is analyzed and used to identify a series of n-grams and a ranked list of linked documents. A subset of the ranked list is selected based upon similarity to the series of n-grams. The subset is then summarized and captured, along with underlying supporting data, into an entry of a timeline document. Related entries in different timeline documents can be linked to create a pivot point that allows a user to jump from one timeline to another. Timeline documents can be made available as part of a search performed by a query system.
Abstract translation: 代表性实施例公开了将文档编译成时间线文档的机制,该时间线文档随着时间的推移跟踪话题的演变。 社交媒体文档可用于识别链接文档的重要性或受欢迎程度(即社交媒体在文章中发布的文档,推文等)。 分析社交媒体文档的集合并用于识别一系列n元组和链接文档的排名列表。 基于与一系列n元组的相似性来选择分级列表的子集。 然后将该子集与基础支持数据一起汇总并捕获到时间线文档的条目中。 可以链接不同时间轴文档中的相关条目以创建一个支点,以便用户从一个时间轴跳转到另一个时间轴。 时间轴文件可作为查询系统执行的搜索的一部分。 p>
-
公开(公告)号:WO2018006703A1
公开(公告)日:2018-01-11
申请号:PCT/CN2017/088969
申请日:2017-06-19
Applicant: 腾讯科技(深圳)有限公司
Inventor: 史继群
IPC: G06F17/30
CPC classification number: G06F16/954 , G06F15/76 , G06F16/335 , G06F16/36 , G06F16/9535 , G06F17/2785 , G06N20/00 , H04L67/26
Abstract: 一种文本内容推荐方法和实现上述文本资讯的推荐方法的系统,所述方法包括:获取需要推荐的第一文本内容(S11);将第一文本内容切分为多个词(S12);预测需要第一文本内容的多维topic分布(S13);计算第一文本内容与资讯推荐池中每个第二文本内容的相关性(S14);根据相关性的计算结果输出至少一个第二文本内容(S16)。
-
-
-
-
-
-
-