Abstract:
Techniques for determining power electronics feasibility in a wireless power transfer system with a transmitting element and a receiving element are provided. An example apparatus includes a processor configured to receive FEM simulation results for offset positions between the transmitting element and the receiving element, calculate a total real input current variation for the offset positions based on the FEM simulation results, calculate an indication of a difference between an ideal transmitting element current value and a real transmitting element current value for each of the offset positions based on the FEM simulation results, determine a maximum difference value based on the indication of the difference for each of the offset positions, and determine the power electronics feasibility based on the total real input current variation as compared to a total real input current variation threshold value, and the maximum difference value as compared to a maximum difference threshold value.
Abstract:
Methods and system for power system optimization and planning based on introducing new state variables. In accordance with an example embodiment, a novel power flow analysis method and/or system introduces new state variables for power system analysis, wherein such new state variables can be referred to as, for example, a 'modified voltage' and a 'modified phase angle.' The novel state variables pave the way in highly nonlinear power flow in power system operation and planning problems for complete linearization while the accuracy of the voltage angles stands close to the full AC power flow.
Abstract:
A method for design of a power delivery network (PDN) integrated with a digital design flow is provided. The method comprises receiving parameters for a PDN; receiving a model of logic circuitry for an integrated circuit; simulating operation of a plurality of configurations of the PDN for the model of logic circuitry over a specified range of minimum voltage; generating a netlist representation of a selected PDN configuration; and processing the netlist representation of the selected PDN configuration along with a digital circuit design for the logic circuitry.
Abstract:
A circuit includes a first die having a first array of exposed data nodes, and a second die having a second array of exposed data nodes, wherein a given data node of the first array corresponds to a respective data node on the second array, further wherein the first array and the second array share a spatial arrangement of the data nodes, wherein the first die has data inputs and sequential logic circuits for each of the data nodes of the first array on a first side of the first array, and wherein the second die has data outputs and sequential logic circuits for each of the data nodes of the second array on a second side of the second array, the first and second sides being different.
Abstract:
Zum Planen eines Energieverteilungsnetzes (EVN) für eine Anlage (20) mit einer Vielzahl von Energieverbrauchern (Mi) umfasst ein Verfahren (100) folgende Schritte: Erstellen (110) zeitabhängiger Lastprofile (Li) der Energieverbraucher (Mi), Erstellen (120) zeitabhängiger Leistungsprofile (Pi) der Energieverbraucher (Mi), Erstellen (130) eines Netzplans (NP) für das Energieverteilungsnetz (EVN), Berechnen (140) eines zeitabhängigen Leistungsprofils (P20) der Anlage (20) und Dimensionieren (150) von Netzkomponenten (Ki) des Energieverteilungsnetzes (EVN) unter Berücksichtigung der berechneten zeitabhängigen Leistungsanforderungen (Pi) an die Netzkomponenten (Ki). Entsprechend umfasst ein Werkzeug (10) zum Planen eines Energieverteilungsnetzes (EVN) folgende Komponenten: ein Last-Berechnungswerkzeug (LBW) zum Erzeugen von Lastprofilen (Li) der Energieverbraucher (Mi), ein Leistungsaufnahme-Berechnungswerkzeug (PBW) zum Erzeugen von zeitabhängigen Leistungsprofilen (Pi) der Energieverbraucher (Mi) und eines Leistungsprofils (P20) der Anlage (20) und ein Netzdimensionierungs-Werkzeug (NDW) zum Dimensionieren und Auswählen von Netzkomponenten (Ki) des Energieverteilungsnetzes (EVN).
Abstract:
The invention relates to a method for reducing the number of flip-flops in a VLSI design that require data retention, thereby eliminating the respective backup cells for those flip flops, the method comprises the steps of: (a) defining one or more criteria for non-essentiality of backup cells! (b) during the physical design stage, analyzing the VLSI design based on said one or more criteria for non- essentiality, and finding those flip-flops that meet these criteria, wherein said analysis is performed at the gate level, independent from any higher level representation of the design; and (c) eliminating from the VLSI design those backup cells for all non-essential flip-flops that meet one or more of said criteria for non-essentiality, thereby leaving in the design only those backup cells for those flip-flops that do not meet any of said criteria.
Abstract:
A method for characterizing a given i.c. design in a target semiconductor manufacturing process, comprising: providing a standard cell library for the process; obtaining a timing report for a data path from an existing description of the design, resulting from synthesis of the design in a given manufacturing process, containing: process independent design information comprising a data path structure comprising standard cells and interconnecting nets, and process dependent design information comprising delay and capacitance values of the cells and nets;creating a functionalized timing report for each data path using only process independent design information of the timing report; determining a cumulative delay for each timing report in the process using substitute process dependent design information, comprising: delay and capacitance values for the cells in the data path, calculated from the library, wherein for nets having a fan-out greater than one an off data path termination load capacitance is considered.