Abstract:
A modular solid-state laser (10) comprises a fiber coupled diode-laser pump module (20) and a laser-enclosure (50). The diode-laser pump module comprises a connector assembly 26 including a collimating lens (32) and produces a collimated beam (28B) of laser-radiation for pumping a gain-element (56) within the laser-enclosure. The beam of pump laser-radiation is focused into the gain-element by optics (54) located within the laser-enclosure. The diode-laser pump module can be replaced or exchanged without realigning optics located within the laser-enclosure by detaching and replacing the connector assembly from the laser enclosure.
Abstract:
Selon un aspect, l'invention concerne un dispositif à fibre optique à seuil Brillouin élevé comprenant une fibre optique (101) adaptée à la propagation d'un faisceau signal de forte puissance optique, des moyens de couplage (11) d'un faisceau signal dans une extrémité d'entrée de la fibre optique (101) et une structure tubulaire (10) comprenant au moins un premier tube (103) et au moins un premier matériau adhésif (102). Selon la présente description, une partie au moins de la fibre optique est immobilisée dans la structure tubulaire (10) au moyen du premier matériau adhésif (102), adhérent à la surface interne du premier tube (103) et à la surface externe de la fibre optique (101). En outre, à température ambiante et sans autres contraintes extérieures sur le dispositif, la partie immobilisée de la fibre optique (101) est maintenue dans un état de compression par la structure tubulaire, l'état de compression étant tel que la déformation relative de la fibre optique soit négative ou nulle sur sa partie immobilisée dans la structure tubulaire, la valeur maximale de la déformation relative de la partie immobilisée de la fibre optique étant supérieure en valeur absolue à 0,3%.
Abstract:
A system includes a master oscillator (102) configured to generate a low-power optical beam (1102). The system also includes a planar waveguide (PWG) amplifier (104) configured to receive the low-power optical beam and generate a high-power optical beam (116) having a power of at least about ten kilowatts. The PWG amplifier includes a single laser gain medium (1110) configured to generate the high-power optical beam. The single laser gain medium can reside within a single amplifier beamline of the system. The master oscillator and the PWG amplifier can be coupled to an optical bench assembly (200, 302), and the optical bench assembly can include optics (106, 110, 202, 213, 214) configured to route the low-power optical beam to the PWG amplifier and to route the high-power optical beam from the PWG amplifier. The PWG amplifier could include a cartridge (206) that contains the single laser gain medium and a pumphead housing (204) that retains the cartridge.
Abstract:
A laser in an embodiment of the present invention is disclosed that includes a laser pump source, a pump-beam coupler (PBC) coupled with the laser pump source, a laser gain medium coupled with the PBC, a second- harmonic generator (SHG) coupled with the laser gain medium; and an output coupler coupled with the SHG.
Abstract:
A stabilized laser source includes a fiber-ring Brillouin laser that incorporates a circulator for non-reciprocal operation and for launching of a pump optical signal. Most of the pump optical signal is launched in a forward direction and drives Brillouin laser oscillation in the backward direction, a portion of which exits via an optical coupler as the optical output of the laser source. A small fraction of the pump optical signal is launched in the backward direction via the optical coupler, and a fraction of that backward-propagating pump optical signal exits via the optical coupler as an optical feedback signal. A frequency-locking mechanism receives the optical feedback signal and controls the pump optical frequency to maintain resonant propagation of the backward-propagating pump optical signal. A second pump optical signal can be launched in the forward direction to generate a second Brillouin laser oscillation.
Abstract:
Die Erfindung betrifft eine Laserverstärkeranordnung (19) mit einer optischen Pumpquelle (21) zum Aussenden von Pumpstrahlung (6) und einer axial angeordneten Laseroszillator-Verstärker-Konfiguration (24), die durch die Pumpstrahlung (6) gepumpt werden kann, wobei die Laseroszillator-Verstärker-Konfiguration (24) einen Laseroszillator (9), der durch einen Teil der Pumpstrahlung zum Aussenden eines Laserstrahles (13) anregbar ist, und einen Laserverstärker (23) aufweist, der sowohl zum Empfangen des Laserstrahls (13) als auch von Pumpstrahlung (6) ausgebildet ist, um den Laserstrahl (13) mittels der Pumpstrahlung (6) zu verstärken. Um bei hohem Miniaturisierungsgrad die Leistung und die Strahlqualität zu erhöhen, wird vorgeschlagen, dass der Laseroszillator (9) und der Laserverstärker (23) bezüglich einer Längsachse (25) der Laseroszillator-Verstärker-Konfiguration (24) im wesentlichen koaxial oder kollinear angeordnet sind und dass die Pumpquelle (21) wenigstens eine erste Strahlquelle (1) zum Erzeugen einer ersten Pumpstrahlung zum Pumpen des Laseroszillators (9), wenigstens eine zweite Strahlquelle (2) zum Erzeugen einer zweiten Pumpstrahlung (6) für den Laserverstärker (23) und eine Pumpstrahlungsleiteinrichtung (26) aufweist, mittels der sowohl die erste als auch die zweite Pumpstrahlung (6) zum longitudinalen Pumpen im wesentlichen in Richtung der Längsachse (25) in die Laseroszillator-Verstärker-Konfiguration (24) einleitbar sind.
Abstract:
An optical amplifier module is configured as a multi-stage free-space optics arrangement, including at least an input stage and an output stage. The actual amplification is provided by a separate fiber-based component coupled to the module. A propagating optical input signal and pump light are provided to the input stage, with the amplified optical signal exiting the output stage. The necessary operations performed on the signal within each stage are provided by directing free- space beams through discrete optical components. The utilization of discrete optical components and free-space beams significantly reduces the number of fiber splices and other types of coupling connections required in prior art amplifier modules, allowing for an automated process to create a "pluggable" optical amplifier module of small form factor proportions.