Abstract:
The present invention relates to a combiner latch circuit and a latching system for generation of one phase differential signal pair or two phase differential signal pairs. The scope of the applications ranges from division and frequency generation in prescalers to phase and frequency generation in mixer's transceivers for high speed wireless applications. The combiner latch circuit 700 comprises an input circuit 701 with an input A 702, an input B 703, a clock input CLK 704, and an inverted clock input CLK705, an output circuit 706with a differential output X, Y 707,708. The input circuit 701 is connected to the output circuit 706, and configured to select a state of the output circuit 706 from a group of: a fourth state (S4) comprising the differential output X=1, Y=0 of the differential output X, Y 707,708, a fifth state (S5) comprising the differential output X=0,Y=1 of the differential output X, Y 707,708. The input circuit 701 is further configured to select the fourth state S4 if the input A=0 and the input B=1 and the clock input CLK 704 encounter a leading edge from 0 to 1 and the output circuit is in the fifth state S5, and select the fifth state S5 if the input A=1 and the input B=0 and the clock input CLK 704encounter a leading edge from 0 to 1 and the output circuit is in the fourth state S4.
Abstract:
A method for dividing a high frequency clock signal for analysis of all clock edges has been developed. The method includes receiving a high frequency clock signal and dividing in up into multiple phases that represent respective edges of the clock signal. The initial phases are generated by the divider with each subsequent phase lagging its preceding phase by one clock cycle. Additional subsequent phases are generated by inverting corresponding initial phases.
Abstract:
L'invention concerne un procédé et un circuit (1) d'identification de type réseau de paramètres physiques contenus dans une puce de circuit intégré, comportant une unique borne (2) d'entrée d'application d'un signal (E) de déclenchement d'une identification, des bornes (3 1 , 3 2 , ..., 3 i-1 , 3 i , ..., 3 n-1 , 3 n ) de sortie propres à délivrer un code binaire (B 1 , B 2 , ..., B i-1 , B i , ..., B n-1 , B n ) d'identification, des premiers chemins électriques (P 1 , P 2 , ..., P i , ..., P n ) relaint individuellement ladite borne d'entrée à chaque borne de sortie, et des moyens (4, 5 1 , 5 2 , ..., 5 i , ..., 5 n ) de prise en compte simultanée des états binaires présents en sortie des chemins électriques, chaque chemin apportant un retard sensible aux dispertions technologiques et/ou de procédé de fabrication du circuit intégré.
Abstract:
An electronic latch circuit (100), a 4–phase signal generator, a multi–stage frequency divider and a poly–phase signal generator are disclosed. The electronic latch circuit (100) comprises an output circuit (105) comprising a first output (X, 106) and a second output (Y, 107). The electronic latch circuit (100) further comprises an input circuit (101) comprising a first input (A, 102), a second input (B, 103) and a clock signal input (CLK, 104). The electronic latch circuit (100) is configured to change state based on the input signals' level at the inputs (A, B, CLK) of the input circuit (101) and a present state of the output circuit (105). The 4–phase signal generator is built with two electronic latch circuits (100). The multi–stage frequency dividers and poly–phase signal generators comprise a plurality of the electronic latch circuits (100) and 4–phase signal generators (300).
Abstract:
The present invention relates to an electronic latch circuit, a method, and a 4-phase generator. The electronic latch circuit comprises an output circuit comprising an output X, and an output Y. The electronic latch circuit further comprises an input circuit, comprising an input A, an input B, and a clock signal input. The input circuit is connected to the output circuit, and configured to select a state of the output circuit from the group of a first state, a second state, and a third state. The input circuit is further configured to select the first state upon detecting a high state on the input B 103, a transition on the clock signal input 104 from a low state to a high state, and a low state on the input A 102, and that the electronic latch circuit 100 is in the second state S2. The input circuit is further configured to select the second state upon detecting a high state on the input A 102, a low state on the input B 103, a low state on the clock signal input 104, and that the electronic latch circuit is in the first state S1;The input circuit is further configured to select the third state upon detecting a high state on the input A 102, a transition on the clock signal input 104 from a low state to a high state, and a low state on the input B 103, and that the electronic latch circuit 100 is in the second state S2. The input circuit is further configured to select the second state upon detecting a high state on the input A 102, a low state on the input B 103, a low state on the clock signal input 104, and that the electronic latch circuit is in the first state S1.
Abstract:
La présente invention concerne un circuit (40) de génération d'au moins deux signaux rectangulaires (S 1 , S 2 ) à déphasage réglable comprenant un circuit diviseur de fréquence (46) recevant en entrée un signal d'horloge (CLK) et fournissant en sortie un signal (CLK_2), au moins deux comparateurs (C1, C2), recevant respectivement sur une entrée une première tension de seuil (Vs 1 ) et au moins une seconde tension de seuil (Vs 2 ) et sur une seconde entrée un signal rampe synchronisé avec le signal d'horloge, les au moins deux tensions de seuil permettant de régler la valeur du déphasage entre les au moins deux signaux rectangulaires et au moins deux bascules de type D (D1, D2) recevant respectivement sur leurs entrées d'horloge, le signal de sortie (Cmp1 ) du premier comparateur et le signal de sortie (Cmp2) du deuxième comparateur et sur leur entrée " D ", le signal de sortie du circuit diviseur de fréquence.
Abstract:
A phase shift generation circuit has an edge detector, which receives an input pulse signal and outputs a first and a second edge signal denoting the time of occurrence of the first and second edges of the input pulse signal. The circuit also has a divide by N circuit, which receives a first clock signal and a group of signals representing a number N, and outputs a second clock signal, said a second clock signal having a frequency equal to the frequency of said first clock signal divided by the number N. The circuit further comprises a pulse counter, which receives the first edge signal and the second clock signal, and outputs a group of signals representing the number of the second clock pulses between occurrences of the first edge signal.
Abstract:
An electronic latch circuit (100) and a multi−phase signal generator (300) are disclosed. The electronic latch circuit (100) comprises an output circuit (105) comprising a first output (X, 106), a second output (Y, 107) and a third output (Z, 108). The electronic latch circuit (100) further comprises an input circuit (101) comprising a first input (A, 102), a second input (B, 103) and a clock signal input (CLK, 104). The electronic latch circuit (100) is configured to change state based on input signals at the inputs (A, B, CLK) of the input circuit (101) and a present state of the output circuit (105). The multi−phase signal generator (300) comprises a plurality N of the electronic latch circuit (100) for generating N phase signals with individual phases. The plurality N of the electronic latch circuit (100) are cascaded with each other.