Abstract:
Procédé de synchronisation d'au moins un circuit de commande esclave, commandé par un signal de commande esclave (2S) à modulation de largeur d'impulsion, avec un circuit de commande maître, commandé par un signal de commande maître (2M) à modulation de largeur d'impulsion, comprenant les étapes suivantes : • émission par le circuit de commande maître d'un signal de synchronisation (5) indicatif d'un front maître d'une grandeur électrique (7M, 8M), • réception par le circuit de commande esclave du signal de synchronisation, • mesure d'un délai (9SM) entre un front esclave de la même grandeur électrique (7S, 8S) et le front maître de la grandeur électrique, • décalage temporel (92E) du signal de commande esclave de manière à réduire ledit délai,• reprise à l'étape de mesure jusqu'à annuler ledit délai.
Abstract:
An input stage for a switched capacitor analog-to-digital converter has a differential voltage input receiving an input voltage, a differential reference voltage input receiving a chopped reference voltage, a common voltage connection, and a differential output. A pair of input capacitors is coupled between the differential voltage input and the differential output and a pair of reference capacitors is coupled between the differential reference voltage input. A switching unit is controlled by a first and second phase operable during the first phase to connect a first terminal of the input capacitors with the common voltage connection and couple the first terminal of the reference capacitors with the inverted differential voltage reference; and during a second phase to connect the first terminal of the input capacitors with the differential input voltage and couple the first terminal of the reference capacitors with the non-inverted differential voltage reference
Abstract:
L'invention concerne un circuit (1) de stockage d'un code binaire (B 1 , B 2 , ..., B i-1 , B i , ..., B n-1 , B n ) dans une puce de circuit intégré, comportant une borne (2) d'entrée d'application d0un signal (E) de déclenchement d'une lecture du code, des bornes (3 1 , 3 2 , ..., 3 i-1 , 3 i , ..., 3 n-1 , 3 n ) de sortie propres à délivrer lidit code binaire, des premiers chemins électriques (P 1 , P 2 , ..., P i , ..., P n ) reliant individuellement ladite borne d'entrée à chaque borne de sortie, chaque chemin apportant un retard fixé à la fabrication du circuit intégré, et des moyens (4, 5 1 , 5 2 , ..., 5 i , ..., 5 n ) de prise en compte simultanée des états binaires présents en sortie des chemins électriques.
Abstract:
Embodiments of the present disclosure relate to a method and system for multiplexing the low frequency signals from at least one clock transmitter to at least one clock receiver to reduce interface count. The low frequency signals are multiplexed in a CLKMUX logic using selection signals. The selection signals are generated using system frame and system clocks. The multiplexed clock is received by the CLKDEMUX logic through an interface. The interface can be backplane connectors, PCB traces and cables. The CLKDEMUX logic de-multiplexes the received clock and transmits to the SELECT LOGIC for selecting at least one low frequency clock. The SELECT LOGIC selects at least one low frequency clock based on the signals from a processor. The jitter attenuator filters jitter in the low frequency clock and the CLOCK SINK distributes system clocks to rest of system elements.
Abstract:
A method and circuit for adjusting clock pulse widths in a high speed sample and hold circuit. A single phase clock signal is input into a pulse discriminator and separated into rising and falling edges. The edges are adjusted to a desired slope. The adjusted edges and the unadjusted edges are summed and output as multiple clock signals with a desired pulse edge alignment. The clock signals control switches in a manner to reduce signal dependent sampling distortion.
Abstract:
The invention relates to an integrated circuit comprising at least two clock systems with which, starting from a clock input (TE1, TE2), the corresponding clock pulse can be routed to individual switching elements or switching blocks (FFi) via clock trees (CT1, CT2, CT3). A controlled switch (MU1, MU2, MU3) is assigned to each clock tree (CT1, CT2, CT3) and, for selected operational states, enables a single common clock pulse to be applied to all clock trees. A PLL unit (PL1) is connected in incoming circuit to at least one first clock tree (CT1, CT2), and an output of this clock tree is connected to an input of the PLL unit in order to form the phase lock loop (PLL). The switches are controlled in selected operational states so that only the common clock pulse is fed to a final clock tree (CT3), and an output of this clock tree is connected to the other input of the PLL unit of the at least one first clock tree (CT1, CT2).
Abstract:
A retriggered oscillator time base including a phase lock loop controlled ring (54) for direct retriggering by a reference oscillator (52). The ring (54) has taps (55) at various successive stages that are outputs to an on-the-fly selector (58) that can add any ten-bit value to a current-tap selection to enable a next-tap selection. Such on-the-fly addition can increase the period of a signal each cycle and thereby divide the reference frequency. Ring's outputs (55) are also used to drive two other retriggered rings (72, 74) for a plurality of NANO timing generators. The use of two rings allows retriggering of one of the rings before the other has completed a whole one-shot cycle. An on-the-fly selector (76) subtracts a value from a present NANO select to a next NANO select to convert back the timebase to the fixed reference frequency for phase and frequency comparison. The subtraction acts as a frequency multiplication whose output Tofx is equal to the reference frequency.
Abstract:
La présente invention concerne un circuit (40) de génération d'au moins deux signaux rectangulaires (S 1 , S 2 ) à déphasage réglable comprenant un circuit diviseur de fréquence (46) recevant en entrée un signal d'horloge (CLK) et fournissant en sortie un signal (CLK_2), au moins deux comparateurs (C1, C2), recevant respectivement sur une entrée une première tension de seuil (Vs 1 ) et au moins une seconde tension de seuil (Vs 2 ) et sur une seconde entrée un signal rampe synchronisé avec le signal d'horloge, les au moins deux tensions de seuil permettant de régler la valeur du déphasage entre les au moins deux signaux rectangulaires et au moins deux bascules de type D (D1, D2) recevant respectivement sur leurs entrées d'horloge, le signal de sortie (Cmp1 ) du premier comparateur et le signal de sortie (Cmp2) du deuxième comparateur et sur leur entrée " D ", le signal de sortie du circuit diviseur de fréquence.
Abstract:
A gate control circuit for controlling gates of at least a half side of an H-bridge circuit includes: an input terminal configured to connect to a PWM signal; a power terminal configured to connect to a voltage source that supplies a positive voltage; a ground terminal configured to connect to a ground reference; and a control circuit connected with the input terminal, the power terminal, and the ground terminal. The control circuit includes: two high side switches configured to be connected with the voltage source respectively through the power terminal; two low side switches configured to be connected with the ground reference respectively through the ground terminal; a first inverter connecting the two high side switches; a second inverter connecting the two low side switches; and a first resistor and a second resistor connecting the two high side switches to the two low side switches respectively.
Abstract:
A phase shift generation circuit has an edge detector, which receives an input pulse signal and outputs a first and a second edge signal denoting the time of occurrence of the first and second edges of the input pulse signal. The circuit also has a divide by N circuit, which receives a first clock signal and a group of signals representing a number N, and outputs a second clock signal, said a second clock signal having a frequency equal to the frequency of said first clock signal divided by the number N. The circuit further comprises a pulse counter, which receives the first edge signal and the second clock signal, and outputs a group of signals representing the number of the second clock pulses between occurrences of the first edge signal.