Abstract:
A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to the synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the narrow pulses suitable for generating a phase locked loop between the demodulator, the matched filter, and the carrier recovery unit.
Abstract:
An intermediate symbol buffer (ISB) configuration and method is provided such that the ISB memory comprises 15 portions, one for each HSDPA spreading code. Symbols associated with a spreading code are written to the memory portion associated with the same spreading code. When a covariance calculation is performed to obtain a more accurate channel estimate, only the symbols associated with spreading codes determined to be needed for the covariance calculation are written to the ISB by a buffer block and red from the ISB by a correlation core. The symbols associated with spreading codes that are not necessary for a covariance calculation may be masked from being written or read from the ISB. In some embodiments each memory portion is an individual memory block. In other embodiments a plurality of memory blocks may contain a plurality of memory portions, one memory partition designated, at least temporarily, or each spreading code.
Abstract:
Techniques for performing interference cancellation in a wireless (eg, CDMA) communication system are described. For a single-sector interference canceller, received samples are processed (e.g., despread) to isolate a signal from a transmitter (e.g., a base station) and obtain input samples. The input samples are transformed based on a first transform (e.g., a fast Hadamard transform) (416) to obtain received symbols for multiple orthogonal channels (e.g., Walsh bins) . The received symbols for the multiple orthogonal channels are scaled with multiple gains (440) to obtain scaled symbols. The gains may be related to the inverses of the power estimates for the orthogonal channels. The scaled symbols are transformed based on a second transform (e.g., an inverse fast Hadamard transform) (442) to obtain output samples, which are processed (e.g., spread) to obtain interference-canceled samples having the signal from the transmitter suppressed.
Abstract:
In one embodiment, a Walsh-Hadamard decoder can have a hardware efficient Fast Hadamard Transform ("FHT") engine. In one embodiment, the FHT engine can include an input to receive an input sequence to be decoded into a Walsh-Hadamard codeword. The FHT engine can further include a controller to correlate the received input sequence with a plurality of Walsh- Hadamard codewords using two, add/subtract modules. In one embodiment, the two add/subtract modules operate in parallel.
Abstract:
A communications method and device that enables multiple source devices (110, 120, 130) to communicate information to a destination device (100) is disclosed. The information communicated from any source device to the destination device (100) typically takes the form of binary electronic product codes ("EPC") or identification ("ID") information. The preferred embodiment of the invention utilizes the techniques of: data scrambling and descrambling; channel selection and transmission; enabling and disabling group transmissions; correlation; and collision mitigation.
Abstract:
A receiver unit includes a first buffer that receives and stores digitized samples at a particular sample rate and a data processor that retrieves segments of digitized samples from the first buffer and processes the retrieved segments with a particular set of parameters values. The data processor is operated based on a processing clock having a frequency that is (e.g., then or more times) higher than the sample rate. Multiple instances of the received signal can be processed by retrieving and processing multiple segments of digitized samples from the first buffer. the receiver unit typically further includes a receiver that receives and processes a transmitted signal to provide the digitized samples and a controller that dispatches tasks for the data processor. The data processor can be designed to include a correlator, a symbol demodulation and combiner, a first accumulator, and a second buffer, or a combination thereof. The correlator despreads the retrieved segments of digitized samples with corresponding segments of PN despreading sequences to provide correlated samples, which are further processed by the symbol demodulation and combiner to provide processed symbols. The second buffer stores the processed symbols, and can be designed to provide de-interleaving of the processed symbols.
Abstract:
Techniques for performing interference cancellation in a wireless ( e.g. , CDMA) communication system are described. For a single-sector interference canceller, received samples are processed ( e.g. , despread) to isolate a signal from a transmitter ( e.g. , a base station) and obtain input samples. The input samples are transformed based on a first transform ( e.g. , a fast Hadamard transform) to obtain received symbols for multiple orthogonal channels ( e.g. , Walsh bins). The received symbols for the multiple orthogonal channels are scaled with multiple gains to obtain scaled symbols. The gains may be related to the inverses of the power estimates for the orthogonal channels. The scaled symbols are transformed based on a second transform ( e.g. , an inverse fast Hadamard transform) to obtain output samples, which are processed ( e.g. , spread) to obtain interference-canceled samples having the signal from the transmitter suppressed.
Abstract:
A complementary code decoder technique is provided where the encoded input data is first parallelized. From the parallelized data, correlation values are generated by a correlator circuit that is capable of changing its correlation characteristics depending on at least one control signal. Different control signals are sequentially provided to the correlator circuit thereby driving the correlator circuit to sequentially generate multiple correlation values from the parallelized data, based on different correlation characteristics. From the multiple correlation values, the correlation value that represents the optimum correlation is identified. This technique significantly reduces the gate count of the decoder structure, thus saving chip area and manufacturing costs.
Abstract:
A flexible Fast Walsh Transform circuit provides configurable FWT sizes, and is suitable for use in radio receivers where the received signal may be generated using varying spreading codes and/or varying numbers of multi-codes. Such signal types are commonly encountered in wireless communication systems like those based on the Wideband CDMA (W-CDMA) or IS-2000 (cdma2000) standards, and particularly with the higher data rate provisions of those standards. In one application, a RAKE receiver includes RAKE fingers that each include one of the flexible FWT circuits, such that each finger despreads the received signal using variably sized FWTs in accordance with the characteristics of the received signal. The flexibility in FWT sizing may derive from, for example, the inclusion of separately selectable but differently sized FWT circuits, or from the inclusion of a configurable FWT circuit capable of generating different sizes of FWTs.