Abstract:
A triggering system and process for a form reader is shown using a histogram of the optical scene. The form reader is open on three sides with a camera facing a platen on to which a form is placed. The camera converts the light rays reflected from the platen into a video stream that is sent to a processor. A change in content of a first light intensity level contrasted to the content of a second light intensity level is used to determine when the form enters the scene. Illustratively, the first light intensity level represents black levels and the second light intensity levels represent white levels. A threshold is pre-determined that isolates the first light intensity content, and when the first light intensity content remains constant (after the presence of a form) the form is deemed to be still wherein the system may then read the information on the form.
Abstract:
The boundaries of a scanned digital document are determined by identifying the largest connected component in the received digital document and assigning the boundaries of the largest connected component as the boundaries of the received digital document or by using a row by row and column by column analysis of the received digital document to identify horizontal and vertical bands in the digital image having pixels with a value opposite to the value of pixels of a background of the received digital document and assigning the horizontal and vertical bands to be the boundaries of the received digital document. These processes may be performed in series or parallel by a processor associated with a scanner that creates the digital document.
Abstract:
A document scanner (10) includes an input tray (20) for holding documents; a transport system (45) for moving documents through the scanner; at least one document detection sensor (135A-135E) for detecting documents; an image capture device for capturing image data for a document; an image processor for determining characteristics of the document based on the image data; and wherein the processor compares characteristics of the document to ultrasonic data and excludes ultrasonic data which conflicts with image data.
Abstract:
Die Erfindung betrifft ein Verfahren zur Erkennung der Breite und Position von Dokumenten (4) in einem großformatigen Scanner-System (1) anhand aufgenommener Bildinformationen, wobei das Scanner-System (1) Bilderfassungselemente (2) zur Aufnahme der Bildinformationen, eine davor angeordneten Optik (3) und einen den Bilderfassungselementen (2) gegenüber angeordneten Reflektor (5) aufweist, mit folgenden Schritten: 51 Vorverarbeitung der aufgenommenen Bildinformationen zur Reduzierung von Störungen durch Verschmutzungen von Optik (3) und Reflektor (5), 52 Groberkennung von horizontalen und/oder vertikalen Übergangsbereichen (12, 13) von Reflektor (5) auf das Dokument (4) und 53 Feinerkennung von horizontalen und/oder vertikalen Dokumentenkanten (10, 11 ) innerhalb der durch die Groberkennung gemäß Schritt S2 detektierten Übergangsbereiche (12, 13).
Abstract:
An image forming apparatus capable of preventing misdetermination of a type of printing paper includes a transmitted light receiver, a specularly reflected light receiver, and a diffusively reflected light receiver, which constitute a sensor, and an output determiner that determines whether data output by the plurality of light receivers is normal. The image forming apparatus determines the type of printing paper and an abnormality of the printing paper from the determination by the output determiner.
Abstract:
A document scanner (10) includes an input tray (30) for holding documents (20) and an input image capture device (40) for capturing images of the documents (20)in the input tray (30) prior to transporting the document for imaging; an output tray (150) for holding documents (20) after the documents (20) exit the scanner; an output image capture device (140) for capturing images of the output tray; an image processor for determining characteristics of the output tray or characteristic of the documents (20) before imaging and after the documents (20) exit the scanner; and scanner functions are modified based on the output tray characteristics or the document characteristics.
Abstract:
Pixel circuits in an image sensor are sampled repetitively during an image frame period. At each sampling, a signal indicative of the photocharge integrated by a pixel circuit since last reset is compared to a threshold. If the integrated photocharge signal has not reached the threshold, the pixel circuit is permitted to continue integrating photocharge. If the integrated photocharge signal has reached the threshold, the pixel circuit is reset to remove integrated photocharge and photocharge integration for that pixel circuit is restarted. A corresponding pixel circuit value is recorded for the reset pixel circuit.
Abstract:
A triggering system and process for a form reader is shown using a histogram of the optical scene. The form reader is open on three sides with a camera facing a platen on to which a form is placed. The camera converts the light rays reflected from the platen into a video stream that is sent to a processor. A change in content of a first light intensity level contrasted to the content of a second light intensity level is used to determine when the form enters the scene. Illustratively, the first light intensity level represents black levels and the second light intensity levels represent white levels. A threshold is pre-determined that isolates the first light intensity content, and when the first light intensity content remains constant (after the presence of a form) the form is deemed to be still wherein the system may then read the information on the form.