Abstract:
A dynamic memory array of a DRAM device is operated using a bitline voltage that is greater than the operating (i.e., switching) voltage of a majority of the digital logic circuitry of the DRAM device. The digital logic circuitry is operated using a supply voltage that is lower than the voltage used to store/retrieve data on the bitlines of the DRAM array. This allows lower voltage swing (and thus lower power) digital logic to be used for a majority of the non-storage array logic on the DRAM device – thus reducing the power consumption of the non-storage array logic which, in turn, reduces the power consumption of the DRAM device as a whole.
Abstract:
In a pixel array within an integrated-circuit image sensor, each of a plurality of pixels is evaluated to determine whether charge integrated within the pixel in response to incident light exceeds a first threshold. N-bit digital samples corresponding to the charge integrated within at least a subset of the plurality of pixels are generated, and then applied to a lookup table to retrieve respective M-bit digital values (M being less than N), wherein a stepwise range of charge integration levels represented by possible states of the M-bit digital values extends upward from a starting charge integration level that is determined based on the first threshold.
Abstract:
An image sensor architecture with multi-bit sampling is implemented within an image sensor system. A pixel signal produced in response to light incident upon a photosensitive element is converted to a multiple-bit digital value representative of the pixel signal. If the pixel signal exceeds a sampling threshold, the photosensitive element is reset. During an image capture period, digital values associated with pixel signals that exceed a sampling threshold are accumulated into image data.
Abstract:
A method of operation in an integrated circuit (IC) memory device is disclosed. The method includes refreshing a first group of storage rows in the IC memory device at a first refresh rate. A retention time for each of the rows is tested. The testing for a given row under test includes refreshing at a second refresh rate that is slower than the first refresh rate. The testing is interruptible based on an access request for data stored in the given row under test.
Abstract:
Row activation operations within a memory component are carried out with respect to subrows instead of complete storage rows to reduce power consumption. Further, instead of activating subrows in response to row commands, subrow activation operations are deferred until receipt of column commands that specify the column operation to be performed and the subrow to be activated.
Abstract:
An asymmetric key cryptographic system is used to generate a cryptographic certificate for authenticating a memory module. This certificate is generated based on information, readable by the authenticator (e.g., host system), from at least one device on the memory module that is not read in order to obtain the certificate. For example, the certificate for authenticating a module may be stored in the nonvolatile memory of a serial presence detect device. The certificate itself, however, is based at least in part on information read from at least one other device on the memory module. Examples of this other device include a registering clock driver, DRAM device(s), and/or data buffer device(s). In an embodiment, the information read from a device (e.g., DRAM) may be based on one or more device fmgerprint(s) derived from physical variations that occur naturally, and inevitably, during integrated circuit manufacturing.
Abstract:
Space in a memory is allocated based on the highest used precision. When the maximum used precision is not being used, the bits required for that particular precision level (e.g., floating point format) are transferred between the processor and the memory while the rest are not. A given floating point number is distributed over non-contiguous addresses. Each portion of the given floating point number is located at the same offset within the access units, groups, and/or memory arrays. This allows a sequencer in the memory device to successively access a precision dependent number of access units, groups, and/or memory arrays without receiving additional requests over the memory channel.
Abstract:
A memory component includes a first memory bank. The first memory bank has a plurality of sub-arrays having sub-rows of memory elements. The memory component includes a write driver, coupled to the first memory bank, to perform a write operation of an entire sub-row of a sub-array. To perform the write operation, the write driver is to load a burst of write data to the memory bank. The memory bank may then activate a plurality of sense amplifiers associated with a plurality of memory elements of the entire sub-row to load the burst of write data to the plurality of sense amplifiers.
Abstract:
Multiple image data subframes corresponding to respective portions of an exposure interval are generated within a sensor device of an image system. Depending on whether the exposure interval exceeds one or more exposure time thresholds, data representative multiple image data subframes are output from the image sensor device in one of at least two formats, including a first format in which each of the subframes of image data is output in its entirety, and a second format in which a logical combination of at least two of the subframes of image data is output instead of the at least two of the subframes of image data such that the total volume of image data output from the image sensor device is reduced relative to the first format.
Abstract:
In an integrated-circuit image sensor having a pixel array, a first subframe readout policy is selected from among a plurality of subframe readout policies, each of the subframe readout policies specifying a first number of subframes of image data to be readout from the pixel array for each output image frame and respective exposure durations for each of the first number of subframes of image data, wherein a shortest one of the exposure durations is uniform for each of the subframe readout policies. Each of the first number of subframes of image data is read out from the pixel array following the respective exposure durations thereof while applying a respective analog readout gain. The analog readout gain applied during readout of at least a first subframe of the first number of subframes is scaled according to a ratio of the shortest one of the exposure durations to the exposure duration of the first subframe.